首页 | 本学科首页   官方微博 | 高级检索  
检索        


The interaction of Streptococcus pneumoniae with plasmin mediates transmigration across endothelial and epithelial monolayers by intercellular junction cleavage
Authors:Attali Cécile  Durmort Claire  Vernet Thierry  Di Guilmi Anne Marie
Institution:Cécile Attali, Claire Durmort, Thierry Vernet, and Anne Marie Di Guilmi
Abstract:The precise mechanisms by which Streptococcus pneumoniae overcomes epithelial and endothelial barriers to access underlying human tissues remain to be determined. The plasminogen system is highly important for the tissue barrier degradation which allows cell migration. Plasminogen is known to interact with pneumococci via enolase, glyceraldehyde-3-phosphate dehydrogenase, and choline-binding protein E. These observations prompted us to evaluate the role of this proteolytic system in the pneumococcal invasion process. We observed that coating of S. pneumoniae R6 strain with plasminogen or inactivated plasmin increased adherence to pulmonary epithelial A549 and vascular endothelial EaHy cells in vitro. This indicates that plasminogen-mediated adherence is independent of the protease activity and involves plasminogen binding to receptors on eukaryotic cell surfaces. Conversely, decreased adherence of bacterial cells coated with active plasmin was observed, indicating that the protease activity limits bacterial attachment on the cell surface. We were then interested in investigating the role of the proteolytic plasmin activity in the traversal of tissue barriers. We observed that adherence of plasmin-coated D39 (encapsulated) or R6 (unencapsulated) pneumococci induced sporadic disruptions of EaHy and A549 monolayer cell junctions. This was not observed when plasmin was inhibited by aprotinin. Endothelial junction disorganization may proceed by proteolysis of the cell junction components. This is supported by our observation of the in vitro cleavage by plasmin bound to pneumococci of recombinant vascular endothelial cadherin, the main component of endothelial adherens junctions. Finally, junction damage induced by plasmin may be related to tissue barrier traversal, as we measured an increase of S. pneumoniae transmigration across epithelial A549 and endothelial EaHy layers when active plasmin was present on the bacterial surface. Our results highlight a novel function for the plasminogen recruitment at the bacterial surface in facilitating adherence of pneumococci to endothelial and epithelial cells, while active plasmin degrades intercellular junctions. This process promotes migration of pneumococci through cell barriers by a pericellular route, a prerequisite for dissemination of S. pneumoniae in the host organism.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号