首页 | 本学科首页   官方微博 | 高级检索  
     


Electrical and mechanical responses to inhibition of cell respiration in vascular smooth muscle of the rat portal vein
Authors:B L Ekmehag
Affiliation:Department of Physiology and Biophysics, University of Lund, Sweden.
Abstract:Metabolic regulation of contractility in vascular smooth muscle was studied in the spontaneously active rat portal vein using respiratory depression by cyanide (0.2-2.0 mM) as a model for tissue hypoxia. Intracellular recordings of electrical activity were done with concomitant registration of force development. Average membrane potential in the absence of cyanide was -61 +/- 1 mV (n = 27). Addition of cyanide to normal Krebs solution resulted in a reduction of force amplitude and the number of action potentials per burst, with a relatively more pronounced effect on the mechanical activity. At moderate levels of inhibition of force amplitude the frequency of spontaneous bursts of action potentials transiently increased concomitant with a slight depolarization, but after prolonged (15-20 min) exposure to cyanide the membrane repolarized to the level prior to cyanide addition and the burst frequency decreased to be equal to or lower than that in the absence of cyanide. Higher concentrations of cyanide totally inhibited spontaneous mechanical and electrical activity. In contrast to the results with glucose, it was found that when beta-hydroxybutyrate was used as substrate the addition of 2 mM cyanide led to a marked hyperpolarization (13 +/- 1 mV) after total inhibition of spontaneous activity. The hyperpolarization was not prevented by administration of 4-aminopyridine (2.5 mM) or tetraethylammonium (4-6 mM) prior to the addition of cyanide. To investigate the effects of increased metabolic demand on the relation between force and membrane potential in cyanide-treated muscle, high-K+ (40 mM) contractures were studied. Contractures were associated with depolarization of 34 +/- 3 mV (n = 5). 1 mM cyanide reduced the amplitude of the contractures to about 9% of control with a moderate reduction in the amount of depolarization (28 +/- 1 mV, n = 5). It is concluded that the decrease of mechanical activity during respiratory inhibition may partly reflect a reduction in the number of spikes per burst but that other mechanisms, independent of membrane activity, also contribute to the inhibition. The increase of glycolysis during respiratory inhibition seems to prevent more pronounced changes in membrane potential.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号