首页 | 本学科首页   官方微博 | 高级检索  
检索        


Effects of oestrogen on progesterone synthesis and arachidonic acid metabolism in human luteal cells
Authors:B Fisch  M P Rose  M G Elder  R M L Winston  R A Margara  S G Hillier
Institution:Institute of Obstetrics and Gynaecology, Royal Postgraduate Medical School, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
Abstract:OBJECTIVE Locally produced oestrogens and prostaglandins (PGs) are implicated in the regulation of luteal lifespan in the human ovary. This study (1) assesses direct effects of these factors on progesterone synthesis in isolated luteal cells, and (2) explores interactions between luteal age and treatment with gonadotrophin or oestrogen on the metabolism of arachidonic acid (prostaglandin precursor) by steroidogenic luteal cells in vitro. DESIGN Primary monolayer cultures of human luteal cells obtained at different stages of the luteal phase were used to investigate the effect of oestradiol, catechol oestrogens (2- and 4-hydroxyoestradiol), diethylstilboestrol, PGE2 and PGF2x on basal and human chorionic gonadotrophin (hCG) stimulated progesterone production in vitro. The role of PGs as modulators of luteal cell function was further investigated by studying the metabolic fate of radioactively labelled arachidonic acid in hormone treated (oestradiol and hCG) and control cultures, assessed by high performance liquid chromatography. ATIENTS Corpora lutea were enucleated from nine women with regular ovulatory cycles undergoing microsurgical reversal of tubal sterilization. Granulosa cell aspirates were obtained from three patients undergoing in-vitro fertilization treatment. RESULTS PGE2 and PGF, at various concentrations did not have a consistent effect, whereas oestradiol, diethylstilboestrol (and 2-hydroxyoestradiol in early luteal cell cultures) significantly inhibited basal and hCG stimulated progesterone biosynthesis. Evidence for direct inhibition of 3β-hydroxysteroid dehydrogenase enzymic activity by oestradiol was obtained. Both major metabolic pathways of arachidonic acid (lipoxygenase and cyclo-oxygenase) were operative in steroidogenic luteal cells recovered throughout the luteal phase. The ratio of PGE2 to PGF2 synthesis in vitro by human luteal cells from endogenously incorporated arachidonic acid did not change significantly with corpus luteum age, with PGE2 tending to predominate. Oestradiol treatment shifted arachidonic acid metabolism from the lipoxygenase towards the cyclo-oxygenase pathway in cells isolated from ageing corpora lutea. CONCLUSIONS Oestradiol, at relatively high concentrations, is a potent inhibitor of basal and hCG induced luteal cell steroidogenesis in vitro. No support is provided for the concept that luteolysis is mediated by local production of PGF. The putative luteolytic effect of oestradiol may entail reduced metabolism of arachidonic acid to lipoxygenase derived products by luteal cells rather than direct stimulation of prostaglandin production by itself.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号