Altered expression and glucocorticoid-inducibility of hepatic CYP3A and CYP2B enzymes in male rats fed diets containing soy protein isolate. |
| |
Authors: | M J Ronis J C Rowlands R Hakkak T M Badger |
| |
Affiliation: | Arkansas Children's Nutrition Center, Arkansas Children's Hospital Research Institute and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA. |
| |
Abstract: | Hepatic CYP3A and CYP2B enzymes were studied in male Sprague-Dawley rats derived from 5-7 litters fed diets in which the protein source was either casein or soy protein isolate. At age 65 d, rats were gavaged with corn oil (vehicle) or 50 mg/kg dexamethasone. Hepatic expression of CYP3A and CYP2B1 mRNA, apoprotein and associated monooxygenase activities were measured. Consumption of soy diets significantly increased monooxygenase activity toward the following: the CYP3A substrates erythromycin and ethylmorphine N-demethylase; corticosterone and testosterone 6beta-hydroxylase; and apoprotein and mRNA expression of CYP3A2 (P < 0.05). Dexamethasone significantly induced turnover of erythromycin and testosterone, expression of CYP3A apoprotein, and expression of CYP3A1 and CYP3A2 mRNA (P < 0.05). In addition, significant diet-inducer interactions were observed in the expression of CYP3A apoprotein and activities toward ethylmorphine, corticosterone and testosterone (P < 0.05). Significant diet-inducer interactions were also observed on CYP2B1-dependent pentoxyresorufin O-depentylase activity (P < 0.05). However, although dexamethasone significantly induced CYP2B1 expression at the apoprotein and mRNA level (P < 0.05), no significant diet effects were observed. These data suggest potential effects of soy consumption on the metabolism of a wide variety of CYP3A and CYP2B1 substrates, especially in situations involving coexposure to CYP inducers. |
| |
Keywords: | |
|
|