首页 | 本学科首页   官方微博 | 高级检索  
     

非小细胞肺癌淋巴结转移预测模型研究
引用本文:卢孔尧,黄钢,左艳. 非小细胞肺癌淋巴结转移预测模型研究[J]. 中国医学物理学杂志, 2022, 0(2): 182-187. DOI: DOI:10.3969/j.issn.1005-202X.2022.02.009
作者姓名:卢孔尧  黄钢  左艳
作者单位:1.上海理工大学医疗器械与食品学院, 上海 200093; 2.上海健康医学院附属嘉定中心医院上海市分子影像学重点实验室, 上海 201318
基金项目:国家自然科学基金重点项目(81830052);上海市分子影像学重点实验室建设项目(18DZ2260400)。
摘    要:在非小细胞肺癌的治疗过程中,淋巴结转移状态是决定治疗方案的重要因素。为了辅助临床医生制定更精确的治疗方案,开发并验证了一种基于CT影像组学非小细胞肺癌淋巴结转移的预测模型。从TCIA数据库的NSCLCRadiogenomics公共数据集中选取了134例符合试验要求的患者数据,然后从每例患者的CT影像数据中提取了1 648个特征,并用特征优化方法进行特征降维和选择,然后用朴素贝叶斯、线性判别分析、支持向量机和高斯过程5种机器学习方法建立预测模型,最后使用上海市胸科医院收集的44例患者数据进行外部验证。其中,最优淋巴结转移预测模型在训练集和测试集上准确率分别为0.802和0.795,AUC值分别为0.852和0.810。试验结果表明,所提出的预测模型分类性能良好,可以辅助医生更准确地评估淋巴结转移状态,从而制定出更精准的个性化治疗方案。

关 键 词:非小细胞肺癌  影像组学  淋巴结转移  机器学习  预测模型

Prediction model for lymph node metastasis in non-small cell lung cancer
LU Kongyao,HUANG Gang,ZUO Yan. Prediction model for lymph node metastasis in non-small cell lung cancer[J]. Chinese Journal of Medical Physics, 2022, 0(2): 182-187. DOI: DOI:10.3969/j.issn.1005-202X.2022.02.009
Authors:LU Kongyao  HUANG Gang  ZUO Yan
Affiliation:1. School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 2. Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
Abstract:Abstract: In the treatment of non-small cell lung cancer, the state of lymph node metastasis is an important factor when deciding the therapeutic schedule. In order to assist clinicians in formulating a more accurate therapeutic schedule, a CT radiomics-based prediction model for lymph node metastasis in non-small cell lung cancer is developed and validated. The patient data of 134 cases meeting the requirement of experiment are selected from the NSCLC-Radiogenomics public data set in TCIA database, and then 1 648 features are extracted from the CT image data of each patient. After feature reduction and selection by feature optimization method, prediction models are established by different machine learning methods, namely na?e Bayes, linear discriminant analysis, support vector machine and Gaussian process. Finally, patient data collected from 44 cases in Shanghai Chest Hospital are used for external validation. Among the established models, the optimal model for predicting lymph node metastasis has an accuracy of 0.802 and 0.795 in training set and test set, respectively, and the AUC is 0.852 and 0.810, respectively. The experimental results show that the proposed prediction model has good classification performances, and can assist doctors in assessing the state of lymph node metastasis more accurately, so as to develop a more precise and personalized therapeutic schedule.
Keywords:non-small cell lung cancer  radiomics  lymph node metastasis  machine learning  prediction model
本文献已被 维普 等数据库收录!
点击此处可从《中国医学物理学杂志》浏览原始摘要信息
点击此处可从《中国医学物理学杂志》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号