首页 | 本学科首页   官方微博 | 高级检索  
检索        


Tree-based exploration of the optimization objectives for automatic cervical cancer IMRT treatment planning
Authors:Hanlin Wang  Ruoxi Wang  Jiacheng Liu  Jian Zhang  Kaining Yao  Haizhen Yue  Yibao Zhang  Jing You  Hao Wu
Institution:1.Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital &Institute, Beijing, China;2.Institute of Medical Technology, Peking University Health Science Center, Beijing, China
Abstract:Objective:To develop and evaluate a practical automatic treatment planning method for intensity-modulated radiation therapy (IMRT) in cervical cancer cases.Methods:A novel algorithm named as Optimization Objectives Tree Search Algorithm (OOTSA) was proposed to emulate the planning optimization process and achieve a progressively improving IMRT plan, based on the Eclipse Scripting Application Programming Interface (ESAPI). 30 previously treated cervical cancer cases were selected from the clinical database and comparison was made between the OOTSA-generated plans and clinical treated plans and RapidPlan-based (RP) plans.Results:In clinical evaluation, compared with plan scores of the clinical plans and the RP plans, 22 and 26 of the OOTSA plans were considered as clinically improved in terms of plan quality, respectively. The average conformity index (CI) for the PTV in the OOTSA plans was 0.86 ± 0.01 (mean ± 1 standard deviation), better than those in the RP plans (0.83 ± 0.02) and the clinical plans (0.71 ± 0.11). Compared with the clinical plans, the mean doses of femoral head, rectum, spinal cord and right kidney in the OOTSA plans were reduced by 2.34 ± 2.87 Gy, 1.67 ± 2.10 Gy, 4.12 ± 6.44 Gy and 1.15 ± 2.67 Gy. Compared with the RP plans, the mean doses of femoral head, spinal cord, right kidney and small intestine in the OOTSA plans were reduced by 3.31 ± 1.55 Gy, 4.25 ± 3.69 Gy, 1.54 ± 2.23 Gy and 3.33 ± 1.91 Gy, respectively. In the OOTSA plans, the mean dose of bladder was slightly increased, with 2.33 ± 2.55 Gy (versus clinical plans) and 1.37 ± 1.74 Gy (vs RP plans). The average elapsed time of OOTSA and clinical planning were 59.2 ± 3.47 min and 76.53 ± 5.19 min.Conclusion:The plans created by OOTSA have been shown marginally better than the manual plans, especially in preserving OARs. In addition, the time of automatic treatment planning has shown a reduction compared to a manual planning process, and the variation of plan quality was greatly reduced. Although improvement on the algorithm is warranted, this proof-of-concept study has demonstrated that the proposed approach can be a practical solution for automatic planning.Advances in knowledge:The proposed method is novel in the emulation strategy of the physicists’ iterative operation during the planning process. Based on the existing optimizers, this method can be a simple yet effective solution for automated IMRT treatment planning.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号