首页 | 本学科首页   官方微博 | 高级检索  
检索        


Functionalization of pristine graphene for the synthesis of covalent graphene–polyaniline nanocomposite
Authors:Jaehyeung Park  Xiaojian Yang  Dhanushka Wickramasinghe  Madanodaya Sundhoro  Nese Orbey  Kwok-Fan Chow  Mingdi Yan
Institution:Department of Chemistry, University of Massachusetts Lowell, Lowell MA 01854 USA.; Division of Advanced Materials Engineering, Dong-Eui University, Busan 47340 Korea ; Department of Chemical Engineering, University of Massachusetts Lowell, Lowell MA 01854 USA
Abstract:Polyaniline (PANI) is one of the most studied conducting polymers owing to its high electrical conductivity, straightforward synthesis and stability. Graphene-supported PANI nanocomposite materials combine the superior physical properties of graphene, synergistically enhancing the performance of PANI as well as giving rise to new properties. Covalent nanocomposites have shown to give higher stability and better performance than their non-covalent counterparts, however, the covalent graphene–PANI nanocomposite are primarily prepared from graphene oxide. We report a new method to synthesize covalent graphene–PANI nanocomposites from pristine graphene. Using few-layer graphene (FLG) flakes as the model system, we first conjugated aniline to FLG via a perfluorophenyl azide (PFPA)-mediated coupling chemistry. A subsequent in situ polymerization of aniline gave polyaniline covalently grafted on the FLG surface. Characterization by FTIR, TEM, SEM, XPS, XRD and electrochemistry confirmed the successful conjugation of PANI to FLG. The grafting density of PANI was estimated by thermal analysis to be ∼26%. As the PFPA-mediated coupling chemistry is applicable to other carbon materials including carbon nanotubes and fullerene, the method developed in this work can be readily adapted to grow PANI on these materials.

Polyaniline was covalently grafted on pristine few-layer graphene via a perfluorophenyl azide-mediated coupling chemistry.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号