首页 | 本学科首页   官方微博 | 高级检索  
     


Prussian blue coated with reduced graphene oxide as high-performance cathode for lithium–Sulfur batteries
Authors:Minghua Chen  Zhanpeng Zhang  Xiaoxue Liu  Yu Li  Yuqing Wang  He Fan  Xinqi Liang  Qingguo Chen
Affiliation:Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), Harbin University of Science and Technology, Harbin 150080 P. R. China,
Abstract:Lithium–sulfur (Li–S) batteries with their outstanding theoretical energy density are strongly considered to take over the post-lithium ion battery era; however, they are limited by sluggish reaction kinetics and the severe shuttling of soluble lithium polysulfides. Prussian blue analogues (PBs) have demonstrated their efficiency in hindering the shuttle effects as host materials of sulfur; unfortunately, they show an inferior electronic conductivity, exhibiting considerable lifespan but poor rate performance. Herein, we rationally designed a PB@reduced graphene oxide as the host material for sulfur (S@PB@rGO) hybrids via a facile liquid diffusion and physical absorption method, in which the sulfur was integrated into Na2Co[Fe(CN)6] and rGO framework. When employed as a cathode, the as-prepared hybrid exhibited excellent rate ability (719 mA h g−1 at 1C) and cycle stability (918 mA h g−1 at 0.5C after 100 cycles). The improved electrochemical performance was attributed to the synergetic effect of PB and conductive rGO, which not only enhanced the physisorption of polysulfides but also provided a conductive skeleton to ensure rapid charge transfer kinetics, achieving high energy/power outputs and considerable lifespan simultaneously. This study may offer a new method manufacturing high performance Li–S batteries.

Lithium–sulfur batteries with high theoretical energy density are strongly considered to take over the post-lithium ion battery era; however, they are limited by sluggish reaction kinetics and the severe shuttling of soluble lithium polysulfides.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号