首页 | 本学科首页   官方微博 | 高级检索  
     


Reactions of triosmium and triruthenium clusters with 2-ethynylpyridine: new modes for alkyne C–C bond coupling and C–H bond activation
Authors:Md. Tuhinur R. Joy  Roknuzzaman  Md. Emdad Hossain  Shishir Ghosh  Derek A. Tocher  Michael G. Richmond  Shariff E. Kabir
Affiliation:Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342 Bangladesh.; Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ UK ; Department of Chemistry, University of North Texas, 1155 Union Circle, Box 305070, Denton TX 76203 USA
Abstract:The reaction of the trimetallic clusters [H2Os3(CO)10] and [Ru3(CO)10L2] (L = CO, MeCN) with 2-ethynylpyridine has been investigated. Treatment of [H2Os3(CO)10] with excess 2-ethynylpyridine affords [HOs3(CO)10(μ-C5H4NCH=CH)] (1), [HOs3(CO)93-C5H4NC Created by potrace 1.16, written by Peter Selinger 2001-2019 CH2)] (2), [HOs3(CO)93-C5H4NC Created by potrace 1.16, written by Peter Selinger 2001-2019 CCO2)] (3), and [HOs3(CO)10(μ-CH Created by potrace 1.16, written by Peter Selinger 2001-2019 CHC5H4N)] (4) formed through either the direct addition of the Os–H bond across the C Created by potrace 1.16, written by Peter Selinger 2001-2019 C bond or acetylenic C–H bond activation of the 2-ethynylpyridine substrate. In contrast, the dominant pathway for the reaction between [Ru3(CO)12] and 2-ethynylpyridine is C–C bond coupling of the alkyne moiety to furnish the triruthenium clusters [Ru3(CO)7(μ-CO){μ3-C5H4NC Created by potrace 1.16, written by Peter Selinger 2001-2019 CHC(C5H4N) Created by potrace 1.16, written by Peter Selinger 2001-2019 CH}] (5) and [Ru3(CO)7(μ-CO){μ3-C5H4NCCHC(C5H4N)CHCHC(C5H4N)}] (6). Cluster 5 contains a metalated 2-pyridyl-substituted diene while 6 exhibits a metalated 2-pyridyl-substituted triene moiety. The functionalized pyridyl ligands in 5 and 6 derive via the formal C–C bond coupling of two and three 2-ethynylpyridine molecules, respectively, and 5 and 6 provide evidence for facile alkyne insertion at ruthenium clusters. The solid-state structures of 1–3, 5, and 6 have been determined by single-crystal X-ray diffraction analyses, and the bonding in the product clusters has been investigated by DFT. In the case of 1, the computational results reveal a rare thermodynamic preference for a terminal hydride ligand as opposed to a hydride-bridged Os–Os bond (3c,2e Os–Os–H bond).

The reactivity of 2-ethynylpyridine at low-valent triosmium and triruthenium centers has been investigated.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号