首页 | 本学科首页   官方微博 | 高级检索  
     


Myocardial mitochondrial oxidative stress and dysfunction in intense exercise: regulatory effects of quercetin
Authors:Chao Gao  Xiaoqian Chen  Juan Li  Yanyan Li  Yuhan Tang  Liang Liu  Shaodan Chen  Haiyan Yu  Liegang Liu  Ping Yao
Affiliation:1.Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Ministry of Environmental Protection Key Laboratory of Environment, and Health (Wuhan) and State Key Laboratory of Environment Health (Incubation), School of Public Health,Tongji Medical College, Huazhong University of Science and Technology,Wuhan,People’s Republic of China;2.Department of Pathophysiology, School of Basic Medicine,Tongji Medical College, Huazhong University of Science and Technology,Wuhan,People’s Republic of China
Abstract:

Introduction

Oxidative stress plays a pivotal role in the intense exercise-induced myocardium injury, and mitochondrial compartment is presumed as the main source and susceptible target of intracellular reactive oxygen species (ROS).

Purpose

The objective of this study was to evaluate the protective effect of quercetin, a naturally occurring flavonoids possessing antioxidant effect on repeated intense exercise-induced mitochondrial oxidative stress and dysfunction.

Methods

Adult male BALB/C mice were treated by quercetin (100 mg/kg bw) for 4 weeks and subjected to the exercise protocol on a treadmill (28 m/min at 5° slope for 90 min) for seven consecutive days concurrently at the fourth week.

Results

Intense exercise in mice resulted in the leakage of creatine kinase-MB (increased from 221.5 ± 33.8 to 151.1 ± 19.1 U/l, P < 0.01) and ultrastructural malformation mainly evidenced by disrupted myofibrils and swollen mitochondria, which was overtly attenuated by quercetin prophylaxis. Quercetin pretreatment evidently alleviated mitochondrial oxidative stress by inhibiting glutathione depletion and aconitase inactivation, ROS over-generation, and lipid peroxidation in cardiac mitochondria of intense exercise mice. Furthermore, mitochondrial dysfunction manifested by decreased mitochondrial membrane potential (68.6 ± 7.6 versus 100.0 ± 7.7 %, P < 0.01) and respiratory control ratio (5.03 ± 0.55 versus 7.48 ± 0.71, P < 0.01) induced as a consequence of acute exercise was markedly mitigated by quercetin precondition.

Conclusion

Quercetin protects mouse myocardium against intense exercise injury, especially ultrastructural damage and mitochondrial dysfunction, probably through its beneficial antioxidative effect, highlighting a promising strategy for over-training injury by naturally occurring phytochemicals.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号