首页 | 本学科首页   官方微博 | 高级检索  
检索        


1,25-dihydroxyvitamin D3 enhances the ability of transferred CD4+ CD25+ cells to modulate T helper type 2-driven asthmatic responses
Authors:Shelley Gorman  Melinda A Judge  Jennifer T Burchell  Debra J Turner  Prue H Hart
Institution:Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, Western Australia, Australia
Abstract:The severity of allergic diseases may be modified by vitamin D. However, the immune pathways modulated by the active form of vitamin D, 1,25‐dihydroxyvitamin D3 1,25(OH)2D3], are yet to be fully elucidated. In this study, naturally occurring CD4+ CD25+ cells from the skin‐draining lymph nodes (SDLN) of mice treated with topical 1,25(OH)2D3 had an increased ability to suppress T helper type 2 (Th2) ‐skewed immune responses. CD4+ CD25+ cells transferred from mice treated with topical 1,25(OH)2D3 into ovalbumin (OVA) ‐sensitized mice challenged intranasally with OVA 18 hr later, significantly suppressed the capacity of airway‐draining lymph node (ADLN) cells to proliferate and secrete cytokines in response to further OVA stimulation ex vivo. The CD4+ CD25+ cells from 1,25(OH)2D3‐treated mice also reduced airway hyperresponsiveness and the proportions of neutrophils and eosinophils in bronchoalveolar lavage fluid (BALF). To test the effect of 1,25(OH)2D3 on cells able to respond to a specific antigen, CD4+ CD25+ cells were purified from the SDLN of OVA‐T‐cell receptor (TCR) transgenic mice treated 4 days earlier with topical 1,25(OH)2D3. CD4+ CD25+ cells from OVA‐TCR mice treated with 1,25(OH)2D3 were able to alter BALF cell content and suppress ADLN responses to a similar degree to those cells from non‐transgenic mice, suggesting that the effect of 1,25(OH)2D3 was not related to TCR signalling. In summary, topical 1,25(OH)2D3 increased the regulatory capacity of CD4+ CD25+ cells from the SDLN to suppress Th2‐mediated allergic airway disease. This work highlights how local 1,25(OH)2D3 production by lung epithelial cells may modulate the suppressive activity of local regulatory T cells.
Keywords:asthma  CD4+ CD25+ regulatory T cells  lung  skin  vitamin D
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号