首页 | 本学科首页   官方微博 | 高级检索  
检索        


Preliminary study of hemodynamics in human carotid bifurcation by computational fluid dynamics combined with magnetic resonance angiography
Authors:Xue Yunjing  Gao Peyi  Lin Yan  Dai Chengbo
Institution:  a Department of Neuroradiology and Department of Neurology, Beijing Neurosurgical Institute, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
Abstract:Background: A longstanding hypothesis that correlates fluid dynamic forces and atherosclerotic disease has led to numerous analytical, numerical, and experimental studies over the years because it is very difficult to measure the hemodynamic variables of blood in vivo.

Purpose: To investigate the technique of visualization and quantitation of hemodynamic variables at carotid artery bifurcation in vivo by combining computational fluid dynamics (CFD) and vascular imaging.

Material and Methods: Twenty-six healthy volunteers underwent magnetic resonance (MR) angiography of the bilateral carotid artery by a 3.0T whole-body scanner. Hemodynamic variables at these carotid bifurcations were calculated and visualized by combining vascular imaging post-processing and CFD.

Results: The average velocity of the carotid bifurcation in the systolic phase and the diastolic phase was 0.46±0.24 m/s and 0.23±0.05 m/s, respectively. Eddy current and back flows were observed at bifurcation and the lateral part of the proximal internal carotid arteries (ICA) and external carotid arteries (ECA), and the shapes of them changed with phases of the cardiac cycle, which were significant at the middle of the systolic phase and faded out quickly downstream of the ICA and ECA. The average range of wall shear stress (WSS) at the bifurcation was 4.36±1.32 Pa, and the maximum WSS was 18.02±4.11 Pa. The WSS map revealed a large region of low WSS at the carotid bulb and extended to the outer wall in the proximal end of the ICA (the lowest value was below 0.5 Pa), and there was also a small region of low WSS at the outer wall in the proximal end of the ECA.

Conclusion: CFD combined with vascular imaging can calculate and visualize hemodynamic variables at carotid bifurcation in vivo individually.
Keywords:Arteries  CNS  computer applications  hemodynamics/flow dynamics  MR angiography  vascular
本文献已被 InformaWorld PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号