首页 | 本学科首页   官方微博 | 高级检索  
检索        


Consequences of a potential-dependent transfer coefficient in ac voltammetry and in coupled electron–proton transfer for attached redox couples
Authors:Harry O Finklea
Institution:Department of Chemistry, West Virginia University, PO Box 6045, Morgantown, WV 26506-6045, USA
Abstract:The Marcus density-of-states model for simple electron transfer predicts that the transfer coefficient is dependent on overpotential. The nature of the potential dependence is a function of the reorganization energies associated with oxidation and reduction processes. A fifth-order polynomial expression accurately yields the potential dependence of the transfer coefficient and the resulting curved Tafel plots. With this polynomial expression, the effects of the potential-dependent transfer coefficient are examined for two cases, ac voltammetry of an attached redox molecule with simple electron transfer and the kinetic behavior of the 1-electron/1-proton redox system. Simulations of ac voltammograms indicate that the effects are minor and that ac voltammetry is poorly suited for determination of the reorganization energy of the redox molecule. In the coupled electron–proton redox case, the effects are marked. As expected, the apparent standard rate constant decreases dramatically at pH values between the pKa values of the two oxidation states. More surprisingly, the simulated Tafel plots exhibit asymmetry between the anodic and cathodic branches depending on the pH. The path of electron transfer from the oxidized to the reduced species (electron–proton or proton–electron) at a fixed pH depends on the electrode potential.
Keywords:Marcus theory  Transfer coefficient  ac voltammetry  Tafel plots  Coupled chemical–electrochemical reactions
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号