Effects of 5-HT6 receptor antagonism and cholinesterase inhibition in models of cognitive impairment in the rat |
| |
Authors: | Marcos B Chuang T T Gil-Bea F J Ramirez M J |
| |
Affiliation: | Department of Pharmacology, University of Navarra, Pamplona, Spain. |
| |
Abstract: | Background and purpose:The beneficial effect of 5-HT6 receptor antagonism in cognition remains controversial. This study has been undertaken to reassess the cognition enhancing properties of acute vs subchronic treatment with the selective 5-HT6 receptor antagonist SB-271046 in unimpaired rats, as well as against scopolamine (cholinergic-) or MK-801 (glutamatergic-mediated) deficits.Experimental approach:The Morris water maze was used, measuring behaviour acquisition and retention, and swim speed. Other behavioural measures included yawning and motor activity. SB-271046 was given acutely before each trial or subchronically for 7 days before the trials. The AChE inhibitor galanthamine was also used alone or in combination with SB-271046.Key results:Subchronic treatment with SB-271046 improved acquisition in the Morris water maze, while the acute treatment only improved retention. Neither acute nor subchronic SB-271046 treatment reversed scopolamine-induced learning deficits. MK-801 induced learning impairment associated with a behavioural syndrome, reversed by acute, but not subchronic, SB-271046 treatment. Interestingly, combined treatment with galanthamine and SB-271046 reversed the scopolamine- or MK-801-induced learning impairments. Subchronic treatment with SB-271046 did not modify motor activity or the increased number of yawns, a cholinergic-mediated behaviour, induced by single administration of SB-271046.Conclusions and implications:These data suggest a potential therapeutic role of 5-HT6 receptor antagonists such as SB-271046, alone or in combination with galanthamine, in the treatment of cognitive dysfunction, such as those seen in Alzheimer''s disease and schizophrenia. |
| |
Keywords: | Morris water maze scopolamine MK-801 galanthamine motor activity |
本文献已被 PubMed 等数据库收录! |
|