首页 | 本学科首页   官方微博 | 高级检索  
     


Band-pass specific contributions of multiple generators to the auditory 40-Hz steady state potentials
Authors:Pratt Hillel  Mittelman Naomi  Bleich Naomi  Zaaroor Menashe
Affiliation:Evoked Potentials Laboratory, Technion-Israel Institute of Technology, Haifa.
Abstract:OBJECTIVE: The purpose of this study was to separate the composite components of the auditory 40 Hz steady-state potentials (40 Hz SSP), by differentially augmenting them with filtering at different low passes, and to compare them with their counterparts in the transient-evoked auditory middle-latency evoked potentials (AMEP). METHODS: Transient-evoked AMEP to 3.3/sec clicks and 40 Hz SSP to 40/sec clicks were recorded from 18 subjects using three orthogonally positioned electrode pairs. Each type of potentials was filtered with a 100 Hz and with a 50 Hz low pass. Equivalent dipoles of components were estimated using Three-channel Lissajous' Trajectories and compared between filter settings (50 and 100 Hz low pass) and between the transient-evoked and the steady-state potentials. RESULTS: With a band pass of 3 to 100 each period of the 40 Hz SSP consisted of a brain stem (V) and four cortical (P0 Na, Pa1 Pa2, and Nb) components. The lower-frequency components of the 40-Hz response corresponded in latency and equivalent dipole orientation to the later transient-evoked cortical AMEP components, whereas the higher-frequency components corresponded to the earlier, brain stem and primary cortical components of transient-evoked AMEP. Band-pass filtering at 3 to 50 Hz resulted in fewer components, as early brain stem and primary cortical components diminished. CONCLUSIONS: A band pass of 3 to 100 Hz for recording the 40 Hz SSP results in a composite waveform comprising of distinct brain stem and cortical generators with different orientations of their equivalent dipoles. The relative contributions of the multiple constituents are affected by the acquisition filter low pass: brain stem and primary cortical generators mostly contribute the high frequencies and later cortical contributions dominate the lower frequencies.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号