首页 | 本学科首页   官方微博 | 高级检索  
检索        


Effect of green tea-loaded chitosan nanoparticles on leathery dentin microhardness
Authors:Curylofo-Zotti  Fabiana Almeida  Tedesco  Antonio Claudio  Lizarelli  Gustavo Teodoro Costa  Takahashi  Luandra Aparecida Unten  Corona  Silmara Aparecida Milori
Institution:1.Department of Restorative Dentistry, School of Dentistry of Ribeir?o Preto, University of S?o Paulo, Cafe Avenue, s/n, Ribeir?o Preto, S?o Paulo, 14040-904, Brazil
;2.Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeir?o Preto, University of S?o Paulo, S?o Paulo, Brazil
;
Abstract:

The purpose of this study was to assess the effect of a chitosan-based nanoformulation containing green tea on leathery (remaining) dentin subsurface microhardness. Size distribution, polydispersity index (PDI) and zeta potential (mV) of nanoformulations were previously determined by dynamic light scattering (DLS). Human dentin specimens were exposed to Streptococcus mutans for 14 d. Soft dentin were selectively removed by Er:YAG laser (n?=?30) or bur (n?=?30). Remaining dentin was biomodified with chitosan nanoparticles (Nchi, n?=?10) or green tea-loaded chitosan nanoparticles (Gt?+?Nchi, n?=?10) for 1 min. Control group (n?=?10) did not receive any treatment. Subsurface microhardness (Knoop) was evaluated in hard (sound) and soft dentin, and then, in leathery dentin and after its biomodification, at depths of 30, 60 and 90 μm from the surface. Nchi reached an average size of?≤?300 nm, PDI varied between 0.311 and 0.422, and zeta potential around?+?30 mV. Gt?+?Nchi reached an average size of?≤?350 nm, PDI?<?0.45, and zeta potential around?+?40 mV. Soft dentin showed significantly reduced microhardness at all depths (p?>?0.05). The subsurface microhardness was independent of choice of excavation method (p?>?0.05). At 30 µm from the surface, Gt?+?Nchi increased the leathery dentin microhardness compared to untreated group (p?<?0.05). Nchi promoted intermediate values (p?>?0.05). Both nanoformulations showed an average size less than 350 nm with nanoparticles of different sizes and stability along the 90-day period evaluated. Subsurface microhardness of bur-treated and laser-irradiated dentin was similar. At 30 µm, the biomodification with Gt?+?Nchi improved the microhardness of leathery dentin, independently of caries excavation method used.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号