首页 | 本学科首页   官方微博 | 高级检索  
检索        


Novel role of gp91(phox)-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis
Authors:Ushio-Fukai Masuko  Tang Yan  Fukai Tohru  Dikalov Sergey I  Ma Yuxian  Fujimoto Mitsuaki  Quinn Mark T  Pagano Patrick J  Johnson Chad  Alexander R Wayne
Institution:Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Ga 30322, USA. mfukai@emory.edu
Abstract:Vascular endothelial growth factor (VEGF) induces angiogenesis by stimulating endothelial cell proliferation and migration, primarily through the receptor tyrosine kinase VEGF receptor2 (Flk1/KDR). Reactive oxygen species (ROS) derived from NAD(P)H oxidase are critically important in many aspects of vascular cell regulation, and both the small GTPase Rac1 and gp91(phox) are critical components of the endothelial NAD(P)H oxidase complex. A role of NAD(P)H oxidase in VEGF-induced angiogenesis, however, has not been defined. In the present study, electron spin resonance spectroscopy is utilized to demonstrate that VEGF stimulates O2*- production, which is inhibited by the NAD(P)H oxidase inhibitor, diphenylene iodonium, as well as by overexpression of dominant-negative Rac1 (N17Rac1) and transfection of gp91(phox) antisense oligonucleotides in human umbilical vein endothelial cells (ECs). Antioxidants, including N-acetylcysteine (NAC), various NAD(P)H oxidase inhibitors, and N17Rac1 significantly attenuate not only VEGF-induced KDR tyrosine phosphorylation but also proliferation and migration of ECs. Importantly, these effects of VEGF are dramatically inhibited in cells transfected with gp91(phox) antisense oligonucleotides. By contrast, ROS are not involved in mediating these effects of sphingosine 1-phosphate (S1P) on ECs. Sponge implant assays demonstrate that VEGF-, but not S1P-, induced angiogenesis is significantly reduced in wild-type mice treated with NAC and in gp91(phox-/-) mice, suggesting that ROS derived from gp91(phox)-containing NAD(P)H oxidase play an important role in angiogenesis in vivo. These studies indicate that VEGF-induced endothelial cell signaling and angiogenesis is tightly controlled by the reduction/oxidation environment at the level of VEGF receptor and provide novel insights into the NAD(P)H oxidase as a potential therapeutic target for angiogenesis-dependent diseases.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号