首页 | 本学科首页   官方微博 | 高级检索  
检索        


FK506-binding protein ligands: structure-based design, synthesis, and neurotrophic/neuroprotective properties of substituted 5,5-dimethyl-2-(4-thiazolidine)carboxylates
Authors:Zhao Liqin  Huang Wei  Liu Hongying  Wang Lili  Zhong Wu  Xiao Junhai  Hu Yuandong  Li Song
Institution:Laboratory of Computer-Aided Drug Design & Discovery, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China. liqinz@usc.edu
Abstract:Structure-based design and discovery of novel neuroimmunophilin FK506-binding protein (FKBP) ligands were pursued in the present study. The binding mode of the known FKBP ligand 1 (3-(3-pyridyl)-1-propyl (2S)-1-(3,3-dimethyl-1,2-dioxopentyl)-2-pyrrolidinecarboxylate) in complex with FKBP12 was investigated using LUDI simulation and upon which a novel scaffold structure predicted to possess improved binding affinity was designed. A virtual combinatorial library composed of diverse combinations of two substituted groups was constructed using Project Library, followed by an automated screening of the library against the ligand binding site on FKBP52 using DOCK. Forty-three candidate compounds that displayed favorable binding with the receptor were identified and synthesized. The neurotrophic activity of the candidate compounds was evaluated on chick dorsal root ganglion cultures in vitro. As a result, 15 compounds exhibited positive effects on ganglion neurite outgrowth in the presence of 0.15 ng/mL NGF, among which 7 compounds at testing concentrations of 1 pM and 100 pM showed greater efficacy than 1 at 100 pM. Compound 18 (3-(3-pyridyl)-1-propyl (2S)-5,5-dimethyl-1-(3,3-dimethyl-1,2-dioxobutyl)-2-(4-thiazolidine)carboxylate) afforded the most potent effect in promoting the processes of neurite outgrowth and which was in a concentration-dependent manner from 1 pM to 100 pM. Half-maximal effect occurred at about 10 pM. Moreover, 18 at a dosage of 10 mg/kg was found to be significantly neuroprotective in a mouse peripheral sympathetic nerve injury model induced by 8 mg/kg 6-hydroxydopamine. This study further suggests the clinical potential of novel FKBP ligands as a new therapeutic approach in the treatment of neurodegenerative disorders, such as Parkinson's disease.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号