首页 | 本学科首页   官方微博 | 高级检索  
     


Monocular deprivation reduces reliability of visual cortical responses to binocular disparity stimuli
Authors:Vorobyov Vasily  Schwarzkopf D Samuel  Mitchell Donald E  Sengpiel Frank
Affiliation:Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3US, UK;
Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia;
Department of Psychology, Dalhousie University, Halifax NS, Canada B3H 4J1
Abstract:While continuous monocular deprivation (MD) of patterned vision causes severe loss of visual cortical responses and visual acuity in the affected eye, these effects can be avoided by providing brief daily periods of binocular exposure [BE; D.E. Mitchell et al. (2003) Curr. Biol ., 8, 1179–1182; D.E. Mitchell et al. (2006) Eur. J. Neurosci ., 23, 2458–2466; D.S. Schwarzkopf et al. (2007) Eur. J. Neurosci ., 25, 270–280]. In order to analyse binocular mechanisms involved in this phenomenon, we studied neuronal responses in primary visual cortex to binocular disparity stimuli in cats that had experienced mixed daily visual exposure (i.e. different amounts of daily binocular and monocular exposure). To examine whether binocular responses are as reliable in MD as in normal animals, we analysed single-trial responses to spatial phase disparity stimuli. In cats with various amounts of daily binocular experience (3.5 h, 7 h or 12 h) alone, about half of neurons (47.9%) showed reliable phase-specific binocular responses in two consecutive trials. The percentage of phase-selective cells was reduced in cats with mixed visual exposure with a decrease in the duration of daily BE. Within these neurons, a 'stable' cell population, i.e. with identical relative phases eliciting the strongest and weakest responses in two trials, was also reduced. In other words, the responses of neurons recorded from deprived animals were more likely to show different preferred phases on successive trials, although their amplitude ratios in both trials were about equal. We suggest that the detrimental effect of MD on binocular vision may begin, at least in part, with a subtle disruption of the mechanism involved in discrimination of binocular disparity signals.
Keywords:binocular exposure    monocular deprivation    single-cell recordings    spatial phase disparity
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号