首页 | 本学科首页   官方微博 | 高级检索  
检索        


Non-invasive assessment of distribution volume ratios and binding potential: tissue heterogeneity and interindividually averaged time-activity curves
Authors:Email author" target="_blank">M?ReimoldEmail author  W?Mueller-Schauenburg  G?A?Becker  G?Reischl  B?M?Dohmen  R?Bares
Institution:(1) Department of Nuclear Medicine, University of Tübingen, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany;(2) Nuclear Medicine, University of Leipzig, Leipzig, Germany;(3) Radiopharmacy, University of Tübingen, Tübingen, Germany
Abstract:Due to the stochastic nature of radioactive decay, any measurement of radioactivity concentration requires spatial averaging. In pharmacokinetic analysis of time-activity curves (TAC), such averaging over heterogeneous tissues may introduce a systematic error (heterogeneity error) but may also improve the accuracy and precision of parameter estimation. In addition to spatial averaging (inevitable due to limited scanner resolution and intended in ROI analysis), interindividual averaging may theoretically be beneficial, too. The aim of this study was to investigate the effect of such averaging on the binding potential (BP) calculated with Loganrsquos non-invasive graphical analysis and the ldquosimplified reference tissue methodrdquo (SRTM) proposed by Lammertsma and Hume, on the basis of simulated and measured positron emission tomography data {11C]d-threo-methylphenidate (dMP) and 11C]raclopride (RAC) PET}. dMP was not quantified with SRTM since the low k 2 (washout rate constant from the first tissue compartment) introduced a high noise sensitivity. Even for considerably different shapes of TAC (dMP PET in parkinsonian patients and healthy controls, 11C]raclopride in patients with and without haloperidol medication) and a high variance in the rate constants (e.g. simulated standard deviation of K 1=25%), the BP obtained from average TAC was close to the mean BP (error <5%). However, unfavourably distributed parameters, especially a correlated large variance in two or more parameters, may lead to larger errors. In Monte Carlo simulations, interindividual averaging before quantification reduced the variance from the SRTM (beyond a critical signal to noise ratio) and the bias in Loganrsquos method. Interindividual averaging may further increase accuracy when there is an error term in the reference tissue assumption E=DV 2DVprime (DV 2 = distribution volume of the first tissue compartment, DVprime = distribution volume of the reference tissue). This can be explained by the fact that the distribution volume ratio (DVR=DV/DVprime) obtained from averaged TAC is an approximation for SgrDV/SgrDVprime rather than for SgrDVR/n. We conclude that Loganrsquos non-invasive method and SRTM are suitable for heterogeneous tissues and that discussion of group differences in PET studies generally should include qualitative and quantitative assessment of interindividually averaged TAC.
Keywords:PET  Kinetic modelling  Reference tissue  Heterogeneity  Noise sensitivity
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号