首页 | 本学科首页   官方微博 | 高级检索  
     


Chronic administration of (+)-amphetamine alters the reactivity of midbrain dopaminergic neurons to prefrontal cortex stimulation in the rat
Authors:Z.-Y. Tong  P.G. Overton  D. Clark
Affiliation:Department of Psychology and Centre for Substance Abuse Research, University of Wales Swansea, SA2 8PP,UK
Abstract:Repeated intermittent administration of (+)-amphetamine produces sensitisation to many of the behavioural effects of the drug. Evidence suggests that excitatory amino acidergic projections from the prefrontal cortex (PFC) to dopaminergic (DA) neurons in the ventral midbrain may be partly involved in the maintenance of sensitisation once induced. The present study was designed to investigate whether chronic amphetamine administration produces any alteration to this input, by assessing the impact of single pulse electrical stimulation of the PFC (0.25 and 0.5 mA) on the extracellular activity of individual midbrain DA neurons in drug and vehicle treated rats. Animals were administered amphetamine according to a schedule known to produce sensitisation (2.5 mg/kg free base, once daily for 6 days; s.c.), and the effect of PFC stimulation was assessed on withdrawal days 2 and 10. In addition to single spike firing patterns, the ability of the stimulation to elicit stimulus bound (time-locked) burst events was also noted. In the majority of cases, the elicited responses could be broadly categorised into two types — ones characterised by an initial excitation (E responses) and ones characterised by excitation following an initial inhibition (IE responses). On withdrawal day 2, IE responses were affected such that, in those responses which contained time-locked bursts in their excitatory phases, the stimulus produced a time-locked burst on a greater percentage of trials. On withdrawal day 10, the principal change was that E responses were more likely to occur in amphetamine-treated animals than controls (0.25 mA; 57.1% vs. 41.2% of responses, respectively; 0.5 mA; 36.7% vs. 23.5% of responses, respectively). It is argued that an increase in the proportion of excitatory responses in drug animals indicates a potentiation of the excitatory drive to the DA neurons. Insofar as sensitisation in the longer term relies upon an enhancement of amphetamine-induced dopamine release in the forebrain, this may be one mechanism by which it is achieved.
Keywords:Electrical stimulation   Prefrontal cortex   Dopaminergic neurons   Synaptic plasticity   Sensitisation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号