首页 | 本学科首页   官方微博 | 高级检索  
     


Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases
Authors:Hong Sunhwa  Cho Young-Wook  Yu Li-Rong  Yu Hong  Veenstra Timothy D  Ge Kai
Affiliation:Nuclear Receptor Biology Section, Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Abstract:Covalent modifications of histones, such as acetylation and methylation, play important roles in the regulation of gene expression. Histone lysine methylation has been implicated in both gene activation and repression, depending on the specific lysine (K) residue that becomes methylated and the state of methylation (mono-, di-, or trimethylation). Methylation on K4, K9, and K36 of histone H3 has been shown to be reversible and can be removed by site-specific demethylases. However, the enzymes that antagonize methylation on K27 of histone H3 (H3K27), an epigenetic mark important for embryonic stem cell maintenance, Polycomb-mediated gene silencing, and X chromosome inactivation have been elusive. Here we show the JmjC domain-containing protein UTX (ubiquitously transcribed tetratricopeptide repeat, X chromosome), as well as the related JMJD3 (jumonji domain containing 3), specifically removes methyl marks on H3K27 in vitro. Further, the demethylase activity of UTX requires a catalytically active JmjC domain. Finally, overexpression of UTX and JMJD3 leads to reduced di- and trimethylation on H3K27 in cells, suggesting that UTX and JMJD3 may function as H3K27 demethylases in vivo. The identification of UTX and JMJD3 as H3K27-specific demethylases provides direct evidence to indicate that similar to methylation on K4, K9, and K36 of histone H3, methylation on H3K27 is also reversible and can be dynamically regulated by site-specific histone methyltransferases and demethylases.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号