首页 | 本学科首页   官方微博 | 高级检索  
     


Adjustable primitive pattern generator: a novel cerebellar model for reaching movements
Authors:Vahdat Shahaboddin  Maghsoudi Arash  Haji Hasani Mojtaba  Towhidkhah Farzad  Gharibzadeh Shahriar  Jahed Mehran
Affiliation:Robotics Laboratory, Faculty of Electrical Engineering, Sharif University of Technology, Tehran, Iran.
Abstract:Cerebellum has been assumed as an array of adjustable pattern generators (APGs). In recent years, electrophysiological researches have suggested the existence of modular structures in spinal cord called motor primitives. In our proposed model, each "adjustable primitive pattern generator" (APPG) module in the cerebellum is consisted of a large number of parallel APGs, the output of each module being the weighted sum of the outputs of these APGs. Each spinal field is tuned by a coefficient, representing a descending supraspinal command, which is modulated by ith APPG correspondingly. According to this model, motor control can be interpreted in terms of the modification of these coefficients. Vector summation of force fields implies that the complex nonlinearities in neuronal behavior are eliminated, causing our model to be simple and linear. The force field vectors, derived from motor primitives, depend on the state of movement and its derivative and the time that causes different repertoire of movement. This is physiologically plausible. Our model agrees with virtual trajectory hypothesis, stating that dynamics are not computed explicitly in central nervous system, but the desired trajectory, is fed into the spinal cord. We think that the dysmetria and the ataxia seen in some cerebellar diseases may be the result of local disruption of some APPGs. Accordingly, determining the exact location of related motor primitives in human spinal cord and stimulating them by functional neurostimulation may provide a good management for these clinical signs. Surely, experimental researches and clinical trials are needed to validate our hypothesis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号