首页 | 本学科首页   官方微博 | 高级检索  
检索        


Identification of human cytochrome P(450)s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data
Authors:Li Xue-Qing  Björkman Anders  Andersson Tommy B  Gustafsson Lars L  Masimirembwa Collen M
Institution:(1) Department of Drug Metabolism and Pharmacokinetics and Bioanalytical Chemistry, AstraZeneca R&D Mölndal, 431 83 Mölndal, Sweden;(2) Unit of Infectious Diseases, Karolinska Institute Hospital, Stockholm, Sweden;(3) Department of Clinical Pharmacology, Huddinge Hospital, Karolinska Institute, Sweden
Abstract:Objective Knowledge about the metabolism of anti-parasitic drugs (APDs) will be helpful in ongoing efforts to optimise dosage recommendations in clinical practise. This study was performed to further identify the cytochrome P450 (CYP) enzymes that metabolise major APDs and evaluate the possibility of predicting in vivo drug clearances from in vitro data.Methods In vitro systems, rat and human liver microsomes (RLM, HLM) and recombinant cytochrome P450 (rCYP), were used to determine the intrinsic clearance (CLint) and identify responsible CYPs and their relative contribution in the metabolism of 15 commonly used APDs.Results and discussion CLint determined in RLM and HLM showed low (r2=0.50) but significant (P<0.01) correlation. The CLint values were scaled to predict in vivo hepatic clearance (CLH) using the 'venous equilibrium model'. The number of compounds with in vivo human CL data after intravenous administration was low (n=8), and the range of CL values covered by these compounds was not appropriate for a reasonable quantitative in vitro–in vivo correlation analysis. Using the CLH predicted from the in vitro data, the compounds could be classified into three different categories: high-clearance drugs (>70% liver blood flow; amodiaquine, praziquantel, albendazole, thiabendazole), low-clearance drugs (<30% liver blood flow; chloroquine, dapsone, diethylcarbamazine, pentamidine, primaquine, pyrantel, pyrimethamine, tinidazole) and intermediate clearance drugs (artemisinin, artesunate, quinine). With the exception of artemisinin, which is a high clearance drug in vivo, all other compounds were classified using in vitro data in agreement with in vivo observations. We identified hepatic CYP enzymes responsible for metabolism of some compounds (praziquantel—1A2, 2C19, 3A4; primaquine—1A2, 3A4; chloroquine—2C8, 2D6, 3A4; artesunate—2A6; pyrantel—2D6). For the other compounds, we confirmed the role of previously reported CYPs for their metabolism and identified other CYPs involved which had not been reported before.Conclusion Our results show that it is possible to make in vitro–in vivo predictions of high, intermediate and low CLint drug categories. The identified CYPs for some of the drugs provide a basis for how these drugs are expected to behave pharmacokinetically and help in predicting drug–drug interactions in vivo.
Keywords:Anti-parasitic drug  Metabolism  Microsomes
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号