首页 | 本学科首页   官方微博 | 高级检索  
     


Extracellular magnesium enhances the damage to locomotor networks produced by metabolic perturbation mimicking spinal injury in the neonatal rat spinal cord in vitro
Authors:G. Margaryan  M. Mladinic  C. Mattioli  A. Nistri
Affiliation:1. Neurobiology Sector, International School for Advanced Studies (SISSA), Via Beirut 2-4, 34151, Trieste;2. Spinal Person Injury Neurorehabilitation Applied Laboratory, Istituto di Medicina Fisica e Riabilitazione, 33100 Udine, Italy
Abstract:An acute injury to brain or spinal cord produces profound metabolic perturbation that extends and exacerbates tissue damage. Recent clinical interventions to treat this condition with i.v. Mg2+ to stabilize its extracellular concentration provided disappointing results. The present study used an in vitro spinal cord model from the neonatal rat to investigate the role of extracellular Mg2+ in the lesion evoked by a pathological medium mimicking the metabolic perturbation (hypoxia, aglycemia, oxidative stress, and acid pH) occurring in vivo. Damage was measured by taking as outcome locomotor network activity for up to 24 h after the primary insult. Pathological medium in 1 mM Mg2+ solution (1 h) largely depressed spinal reflexes and suppressed fictive locomotion on the same and the following day. Conversely, pathological medium in either Mg2+-free or 5 mM Mg2+ solution evoked temporary network depression and enabled fictive locomotion the day after. While global cell death was similar regardless of extracellular Mg2+ solution, white matter was particularly affected. In ventral horn the number of surviving neurons was the highest in Mg2+ free solution and the lowest in 1 mM Mg2+, while motoneurons were unaffected. Although the excitotoxic damage elicited by kainate was insensitive to extracellular Mg2+, 1 mM Mg2+ potentiated the effect of combining pathological medium with kainate at low concentrations. These results indicate that preserving Mg2+ homeostasis rendered experimental spinal injury more severe. Furthermore, analyzing ventral horn neuron numbers in relation to fictive locomotion expression might provide a first estimate of the minimal size of the functional locomotor network.
Keywords:central pattern generator   burst   motoneuron   kainate   hypoxia   neuroprotection
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号