首页 | 本学科首页   官方微博 | 高级检索  
     


A broadband viscoelastic spectroscopic study of bovine bone: implications for fluid flow
Authors:Buechner P M  Lakes R S  Swan C  Brand R A
Affiliation:(1) Engineering Mechanics Program, University of Wisconsin-Madison, 147 Engineering Research Building, 1500 Engineering Drive, Madison, WI;(2) Department of Biomedical Engineering, Department of Engineering Physics, Materials Science Program, and Rheology Research Center, University of Wisconsin-Madison, 147 Engineering Research Building, 1500 Engineering Drive, Madison, WI;(3) Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA;(4) Department of Orthopaedic Surgery, University of Iowa, Iowa City, IA
Abstract:To explore the hypothesis that mechanical excitation-induced fluid flow and/or fluid pressure are potential mechanical transduction mechanisms in bone adaptation, a complementary experimental and analytical modeling effort has been undertaken. Experimentally, viscoelastic tandelta properties of saturated cortical bovine bone were measured in both torsion and bending, and significant tan delta values in the 100-105Hz range were observed, although the nature of the damping is not consistent with a fluid pressure hypothesis. Analytically, micromechanically based poroelasticity models were exercised to quantify energy dissipation associated with load-induced fluid flow in large scale channels. The modeling results indicate that significant damping due to fluid flow occurs only above 1 MHz frequencies. Together, the experimental and analytical results indicate that at excitation frequencies presumed to be physiological (1–100 Hz), mechanical loading of bone generates extremely small pore fluid pressures, making the hypothesized fluid-pressure transduction mechanism upon osteocytes untenable. © 2001 Biomedical Engineering Society.PAC01: 8380Lz, 8710+e, 8385Cg
Keywords:Fluid flow  Bone  Porosity  Viscoelasticity
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号