Role of Bile Acids in Liver Injury and Regeneration following Acetaminophen Overdose |
| |
Authors: | Bharat Bhushan Prachi Borude Genea Edwards Chad Walesky Joshua Cleveland Feng Li Xiaochao Ma Udayan Apte |
| |
Affiliation: | Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas |
| |
Abstract: | Bile acids play a critical role in liver injury and regeneration, but their role in acetaminophen (APAP)–induced liver injury is not known. We tested the effect of bile acid modulation on APAP hepatotoxicity using C57BL/6 mice, which were fed a normal diet, a 2% cholestyramine (CSA)–containing diet for bile acid depletion, or a 0.2% cholic acid (CA)–containing diet for 1 week before treatment with 400 mg/kg APAP. CSA-mediated bile acid depletion resulted in significantly higher liver injury and delayed regeneration after APAP treatment. In contrast, 0.2% CA supplementation in the diet resulted in a moderate delay in progression of liver injury and significantly higher liver regeneration after APAP treatment. Either CSA-mediated bile acid depletion or CA supplementation did not affect hepatic CYP2E1 levels or glutathione depletion after APAP treatment. CSA-fed mice exhibited significantly higher activation of c-Jun N-terminal protein kinases and a significant decrease in intestinal fibroblast growth factor 15 mRNA after APAP treatment. In contrast, mice fed a 0.2% CA diet had significantly lower c-Jun N-terminal protein kinase activation and 12-fold higher fibroblast growth factor 15 mRNA in the intestines. Liver regeneration after APAP treatment was significantly faster in CA diet–fed mice after APAP administration secondary to rapid cyclin D1 induction. Taken together, these data indicate that bile acids play a critical role in both initiation and recovery of APAP-induced liver injury.Bile acids are versatile biological molecules that regulate energy homeostasis, activate nuclear receptors and cell signaling pathways, and control cell proliferation and inflammatory processes in the liver and gastrointestinal tract.1,2 Bile acids maintain their own homeostasis by activating a complex signaling network involving hepatic and intestinal farnesoid X receptor (FXR), small heterodimer partner, and intestinal fibroblast growth factor (FGF) 15 (FGF19 in human) expression, culminating in inhibition of the primary bile acid–synthesizing enzyme, CYP7A1.3–6 Although bile acids are potent signaling molecules at pathophysiological concentrations, they cause apoptosis, necrosis, and oxidative stress.3,7–10 Bile acids have also been implicated in stimulation of liver regeneration.11–14 Studies in recent years indicate that the bile acid–mediated gut-liver signaling axis may play a critical role in regulation of liver homeostasis.6,15,16Acetaminophen (APAP) is the most commonly used analgesic and antipyretic agent.17 An overdose of APAP is the major cause of acute liver failure in the United States.18,19 The mechanisms of APAP-induced liver injury and subsequent liver regeneration are the focus of intense investigation.20–22 In an overdose situation, excess APAP is mainly metabolized by CYP2E1 to a reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI). In hepatocytes, conjugation of NAPQI to GSH is the key mechanism for detoxification of NAPQI. Once the GSH is depleted, NAPQI attacks cellular proteins, especially mitochondrial proteins, to form protein adducts. This triggers a cascade of intracellular signaling events involving c-Jun N-terminal protein kinase (JNK) activation and mitochondrial permeability transition, finally culminating in necrotic cell death.20 Liver injury is followed by compensatory liver regeneration, which is a critical determinant of final outcome of liver injury.23 Despite decades of research, how these intracellular events are affected by extracellular signaling is not known.The current study was designed to explore the role of bile acids in initiation of liver injury and stimulation of liver regeneration after APAP overdose. These studies are highly significant because the data reveal a novel role of bile acids in cellular protection and liver regeneration after APAP overdose, and these studies investigate the effect of resin-mediated bile acid depletion, a commonly used therapy, on APAP toxicity. |
| |
Keywords: | |
|
|