Whole-genome sequence assembly for mammalian genomes: Arachne 2 |
| |
Authors: | Jaffe David B Butler Jonathan Gnerre Sante Mauceli Evan Lindblad-Toh Kerstin Mesirov Jill P Zody Michael C Lander Eric S |
| |
Affiliation: | Whitehead Institute/MIT Center for Genome Research, Cambridge, Massachusetts 02141, USA. jaffe@genome.wi.mit.edu |
| |
Abstract: | We previously described the whole-genome assembly program Arachne, presenting assemblies of simulated data for small to mid-sized genomes. Here we describe algorithmic adaptations to the program, allowing for assembly of mammalian-size genomes, and also improving the assembly of smaller genomes. Three principal changes were simultaneously made and applied to the assembly of the mouse genome, during a six-month period of development: (1) Supercontigs (scaffolds) were iteratively broken and rejoined using several criteria, yielding a 64-fold increase in length (N50), and apparent elimination of all global misjoins; (2) gaps between contigs in supercontigs were filled (partially or completely) by insertion of reads, as suggested by pairing within the supercontig, increasing the N50 contig length by 50%; (3) memory usage was reduced fourfold. The outcome of this mouse assembly and its analysis are described in (Mouse Genome Sequencing Consortium 2002). |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|