首页 | 本学科首页   官方微博 | 高级检索  
     


Sensory deprivation differentially impacts the dendritic development of pyramidal versus non-pyramidal neurons in layer 6 of mouse barrel cortex
Authors:Chia-Chien?Chen,Danny?Tam,Joshua?C.?Brumberg  author-information"  >  author-information__contact u-icon-before"  >  mailto:Joshua.brumberg@qc.cuny.edu"   title="  Joshua.brumberg@qc.cuny.edu"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:(1) Neuropsychology Doctoral Subprogram, The Graduate Center, CUNY, 365 Fifth Avenue, New York, NY 10016, USA;(2) Department of Psychology, Queens College, CUNY, 65-30 Kissena Boulevard, Flushing, NY 11367, USA;
Abstract:Early postnatal sensory experience can have profound impacts on the structure and function of cortical circuits affecting behavior. Using the mouse whisker-to-barrel system we chronically deprived animals of normal sensory experience by bilaterally trimming their whiskers every other day from birth for the first postnatal month. Brain tissue was then processed for Golgi staining and neurons in layer 6 of barrel cortex were reconstructed in three dimensions. Dendritic and somatic parameters were compared between sensory-deprived and normal sensory experience groups. Results demonstrated that layer 6 non-pyramidal neurons in the chronically deprived group showed an expansion of their dendritic arbors. The pyramidal cells responded to sensory deprivation with increased somatic size and basilar dendritic arborization but overall decreased apical dendritic parameters. In sum, sensory deprivation impacted on the neuronal architecture of pyramidal and non-pyramidal neurons in layer 6, which may provide a substrate for observed physiological and behavioral changes resulting from whisker trimming.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号