首页 | 本学科首页   官方微博 | 高级检索  
     


Direct aperture optimization of breast IMRT and the dosimetric impact of respiration motion
Authors:Zhang Guowei  Jiang Ziping  Shepard David  Zhang Bin  Yu Cedric
Affiliation:Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA. gzhan002@umaryland.edu
Abstract:We have studied the application of direct aperture optimization (DAO) as an inverse planning tool for breast IMRT. Additionally, we have analysed the impact of respiratory motion on the quality of the delivered dose distribution. From this analysis, we have developed guidelines for balancing the desire for a high-quality optimized plan with the need to create a plan that will not degrade significantly in the presence of respiratory motion. For a DAO optimized breast IMRT plan, the tangential fields incorporate a flash field to cover the range of respiratory motion. The inverse planning algorithm then optimizes the shapes and weights of additional segments that are delivered in combination with the open fields. IMRT plans were generated using DAO with the relative weights of the open segments varied from 0% to 95%. To assess the impact of breathing motion, the dose distribution for the optimized IMRT plan was recalculated with the isocentre sampled from a predefined distribution in a Monte Carlo convolution/superposition dose engine with the breast simulated as a rigid object. The motion amplitudes applied in this study ranged from 0.5 to 2.0 cm. For a range of weighting levels assigned to the open field, comparisons were made between the static plans and the plans recalculated with motion. For the static plans, we found that uniform dose distributions could be generated with relative weights for the open segments equal to and below 80% and unacceptable levels of underdosage were observed with the weights larger than 80%. When simulated breathing motion was incorporated into the dose calculation, we observed a loss in dose uniformity as the weight of the open field was decreased to below 65%. More quantitatively, for each 1% decrease in the weight, the per cent volume of the target covered by at least 95% of the prescribed dose decreased by approximately 0.10% and 0.16% for motion amplitudes equal to 1.5 cm and 2.0 cm, respectively. When taking into account the motion effects, the most uniform and conformal dose distributions were achieved when the open segment weights were in the range of 65-80%. Within this range, high-quality IMRT plans were produced for each case. The study demonstrates that DAO with tangential fields provides a robust and efficient technique for breast IMRT planning and delivery when the open segment weight is selected between 65% and 80%.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号