首页 | 本学科首页   官方微博 | 高级检索  
     


Decorin mimic promotes endothelial cell health in endothelial monolayers and endothelial–smooth muscle co‐cultures
Authors:Rebecca A. Scott  Aneesh K. Ramaswamy  Kinam Park  Alyssa Panitch
Affiliation:1. Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA;2. School of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA
Abstract:Non‐specific cytotoxins, including paclitaxel and sirolimus analogues, currently utilized as anti‐restenotic therapeutics, affect not only smooth muscle cells (SMCs) but also neighbouring vascular endothelial cells (ECs). These drugs inhibit the formation of an intact endothelium following vessel injury, thus emphasizing the critical need for new candidate therapeutics. Utilizing our in vitro models, including EC monolayers and both hyperplastic and quiescent EC–SMC co‐cultures, we investigated the ability of DS–SILY20, a decorin mimic, to promote EC health. DS–SILY20 increased EC proliferation and migration by 1.5‐ and 2‐fold, respectively, which corresponded to increased phosphorylation of ERK‐1/2. Interestingly, IL‐6 secretion and the production of both E‐selectin and P‐selectin were reduced in the presence of 10 μm DS–SILY20, even in the presence of the potent pro‐inflammatory cytokine platelet‐derived growth factor (PDGF). In hyperplastic and quiescent EC–SMC co‐cultures, DS–SILY20 treatment reduced the secretion of IFNγ, IL‐1β, IL‐6 and TNFα, corresponding to a 23% decrease in p38 phosphorylation. E‐selectin and P‐selectin expression was further reduced following DS–SILY20 treatment in both co‐culture models. These results indicate that DS–SILY20 promotes EC health and that this decorin mimic could serve as a potential therapeutic to promote vessel healing following percutaneous coronary intervention (PCI). Copyright © 2015 John Wiley & Sons, Ltd.
Keywords:decorin  endothelial cells  vascular smooth muscle cells  co‐culture  proteoglycan  dermatan sulphate
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号