首页 | 本学科首页   官方微博 | 高级检索  
检索        

双节段后路腰椎椎体间融合术单侧椎弓根钉固定的生物力学稳定性
作者姓名:Dong JW  Feng F  Zhao WD  Rong LM  Liu XM
作者单位:1. 中山大学附属第三医院脊柱外科,广州,510630
2. 南方医科大学解剖教研室
摘    要:目的 分析对模拟双节段腰椎后路椎体间融合术(PLIF)采用单侧椎弓根钉固定(单侧固定)的生物力学稳定性.方法 将6具新鲜成人尸体腰椎标本(L2~S2)分别制备成L4~S1的PLIF模型,应用MTS 858实验机模拟产生屈伸、侧弯、轴向旋转,并按初始状态、单侧不稳、单侧不稳-单侧固定、双侧不稳-单侧固定、双侧不稳-双侧固定、双侧不稳的顺序进行测试,动态摄取记录各个节段角位移运动范围(ROM)与中性区值(NZ).结果 单侧不稳-单侧固定屈伸、侧弯、轴向旋转方向ROM值依次为2.53±1.12、4.03±2.19、2.78±1.00,NZ值依次为1.14±0.70、1.96±1.13、1.28±0.71,均显著小于初始状态(P<0.05),相比双侧不稳-双侧固定,各方向ROM与NZ值分别增加60.13%与17.52%、315.46%与243.86%、8.17%与6.20%,但差异无统计学意义(P>0.05).双侧不稳-单侧固定侧弯与旋转状态ROM与NZ值较双侧不稳-双侧固定显著增加(P<0.05).结论 单侧固定对人腰椎标本模拟双节段单侧PLIF可提供与双侧固定相似的生物力学稳定性,而对于模拟双节段双侧PLIF则单侧固定在大多数三维运动方向上不能提供足够的力学稳定性.
Abstract:
Objective To analyze the biomechanical efficacy of unilateral pedicle screw fixation on human cadaveric lumbar spine model simulated by two-level posterior lumbar interbody fusion (PLIF). Methods Six fresh-frozen adult human cadaveric lumbar spine motion segments (L2-S2) were simulated to unilateral/bilateral L4-S1 PLIF constructs augmented by unilateral/bilateral pedicle screw fixation sequentially and respectively. All configurations were tested by MTS 858 in the following sequential construct order: the intact, UI (unilateral instability), UIUF1C (unilateral instability via unilateral pedicle screw fixation plus one cage) , BIUF1C (bilateral instability via unilateral pedicle screw fixation plus one cage) , BIBF1C (bilateral instability via bilateral pedicle screw fixation plus one cage) and BI (bilateral instability without pedicle screw and cage). Each specimen was nondestructively tested in flexion/extension, lateral performed between different simulated constructs with One Way of ANOVA and Post hoc LSD tests. Results BIBF1C had the lowest ROM and NZ of L4-S1 fusion segments in all loading models, which were significantly lower than those of any uninstmmented construct (the intact, UI and BI) (P < 0. 05). In flexion/extension, lateral bending, and axial rotation, the ROM of UIUF1C was respectively 2.53 ± 1. 12, 4.03 ± 2. 19, 2. 78 ±1.00 and the NZ of UIUF1C was respectively 1.14 ±0.70, 1.96 ±1. 13, 1.28 ±0.71, which were significantly lower than those of the intact (P <0. 05). Compared to BIBF1C, the ROM and NZ were respectively increased 60.13% and 17.52% in flexion/extension, 315.46% and 243.86% in lateral bending, 8. 17% and 6. 20% in axial rotation, however, there were no significant differences between these two constructs (P > 0. 05). In lateral-bending and axial rotation, the ROM and NZ of BIUF1C were significantly higher than those of BIBF1C (P < 0. 05). In flexion/extension, the ROM and NZ of BIUF1C were higher than those of BIBF1C but there were no significant differences (P >0. 05). Compared to the intact, BIUF1C had lower ROM and NZ except for higher NZ in axial rotation, and there were significant differences only in flexion/extension (P < 0. 05). Conclusions All tested two-level unilateral fixation on simulated human cadaveric model with unilateral PLIF can achieve similar initial biomechanical stability in comparison with two-level bilateral pedicle screw fixation. However in most test modes, two-level unilateral pedicle screw fixation on simulated human cadaveric model with bilateral PLIF can not achieve enough biomechanical efficacy in comparison with two-level bilateral pedicle screw fixation.

关 键 词:腰椎  生物力学  腰椎融合  单侧固定  双侧固定

Biomechanical stability of unilateral pedicle screw fixation on cadaveric model simulated two-level posterior lumbar interbody fusion
Dong JW,Feng F,Zhao WD,Rong LM,Liu XM.Biomechanical stability of unilateral pedicle screw fixation on cadaveric model simulated two-level posterior lumbar interbody fusion[J].Chinese Journal of Surgery,2011,49(5):436-439.
Authors:Dong Jian-wen  Feng Feng  Zhao Wei-dong  Rong Li-min  Liu Xiao-ming
Institution:Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
Abstract:Objective To analyze the biomechanical efficacy of unilateral pedicle screw fixation on human cadaveric lumbar spine model simulated by two-level posterior lumbar interbody fusion (PLIF). Methods Six fresh-frozen adult human cadaveric lumbar spine motion segments (L2-S2) were simulated to unilateral/bilateral L4-S1 PLIF constructs augmented by unilateral/bilateral pedicle screw fixation sequentially and respectively. All configurations were tested by MTS 858 in the following sequential construct order: the intact, UI (unilateral instability), UIUF1C (unilateral instability via unilateral pedicle screw fixation plus one cage) , BIUF1C (bilateral instability via unilateral pedicle screw fixation plus one cage) , BIBF1C (bilateral instability via bilateral pedicle screw fixation plus one cage) and BI (bilateral instability without pedicle screw and cage). Each specimen was nondestructively tested in flexion/extension, lateral performed between different simulated constructs with One Way of ANOVA and Post hoc LSD tests. Results BIBF1C had the lowest ROM and NZ of L4-S1 fusion segments in all loading models, which were significantly lower than those of any uninstmmented construct (the intact, UI and BI) (P < 0. 05). In flexion/extension, lateral bending, and axial rotation, the ROM of UIUF1C was respectively 2.53 ± 1. 12, 4.03 ± 2. 19, 2. 78 ±1.00 and the NZ of UIUF1C was respectively 1.14 ±0.70, 1.96 ±1. 13, 1.28 ±0.71, which were significantly lower than those of the intact (P <0. 05). Compared to BIBF1C, the ROM and NZ were respectively increased 60.13% and 17.52% in flexion/extension, 315.46% and 243.86% in lateral bending, 8. 17% and 6. 20% in axial rotation, however, there were no significant differences between these two constructs (P > 0. 05). In lateral-bending and axial rotation, the ROM and NZ of BIUF1C were significantly higher than those of BIBF1C (P < 0. 05). In flexion/extension, the ROM and NZ of BIUF1C were higher than those of BIBF1C but there were no significant differences (P >0. 05). Compared to the intact, BIUF1C had lower ROM and NZ except for higher NZ in axial rotation, and there were significant differences only in flexion/extension (P < 0. 05). Conclusions All tested two-level unilateral fixation on simulated human cadaveric model with unilateral PLIF can achieve similar initial biomechanical stability in comparison with two-level bilateral pedicle screw fixation. However in most test modes, two-level unilateral pedicle screw fixation on simulated human cadaveric model with bilateral PLIF can not achieve enough biomechanical efficacy in comparison with two-level bilateral pedicle screw fixation.
Keywords:Lumbar vertebrae  Biomechanics  Lumbar fusion  Unilateral pedicle screw fixation  Bilateral pedicle screw fixation
本文献已被 万方数据 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号