首页 | 本学科首页   官方微博 | 高级检索  
     


Serum and urinary nitric oxide in Type 2 diabetes with or without microalbuminuria: relation to glomerular hyperfiltration
Authors:Apakkan Aksun Saliha  Ozmen Bilgin  Ozmen Dilek  Parildar Zuhal  Senol Belgin  Habif Sara  Mutaf Işil  Turgan Nevbahar  Bayindir Oya
Affiliation:

a Department of Clinical Biochemistry, Ege University Faculty of Medicine, Bornova, Izmir 35100, Turkey

b Department of Endocrinology, Celal Bayar University Faculty of Medicine, Manisa, Turkey

Abstract:BACKGROUND: Glomerular hyperfiltration is considered as one of the pathophysiological mechanisms for the development of diabetic nephropathy. Oxidative stress is enhanced in patients with diabetes mellitus. Reportedly, nitric oxide (NO) might be involved in the pathogenesis of hyperfiltration. We investigated the relationship between hyperfiltration and NO system, and malondialdehyde (MDA) levels in Type 2 diabetics with/without microalbuminuria. METHODS: In 39 microalbuminuric, 29 normoalbuminuric Type 2 diabetic patients and 32 healthy controls, serum creatinine, nitrite, nitrate, urinary microalbumin, nitrite, nitrate, plasma MDA and estimated glomerular filtration rate (EGFR) values, calculated according to the Cockcroft and Gault formula, were recorded. RESULTS: Serum and urine NO levels were higher in both microalbuminurics and normoalbuminurics than controls. There were no significant differences in EGFR between groups. However, hyperfiltration was determined in 31% of normoalbuminurics and 20% of microalbuminurics. Serum and urine NO levels were higher in patients with hyperfiltration. Plasma MDA levels were significantly elevated in both microalbuminurics and normoalbuminurics when compared with controls. Serum glucose and microalbuminuria were positively correlated in microalbuminuric diabetics. Serum NO levels were also positively correlated with EGFR in both normoalbuminurics and microalbuminurics. HbA1c levels were positively correlated with both urinary albumin excretion and plasma MDA levels in normoalbuminuric diabetics. CONCLUSIONS: Hyperglycemia is associated with an increased NO biosynthesis and lipid peroxidation. Increased oxidative stress may contribute to the high NO levels in Type 2 diabetes. Furthermore, the high NO levels may lead to hyperfiltration and hyperperfusion, which in turn leads to an increase in urinary albumin excretion and thus causes progression of nephropathy in early Type 2 diabetes.
Keywords:Diabetic nephropathy   Glomerular hyperfiltration   Nitric oxide   Lipid peroxidation   Microalbuminuria
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号