首页 | 本学科首页   官方微博 | 高级检索  
     


Spontaneous REM sleep is modulated by the activation of the pedunculopontine tegmental GABAB receptors in the freely moving rat
Authors:Ulloor Jagadish  Mavanji Vijayakumar  Saha Subhash  Siwek Donald F  Datta Subimal
Affiliation:Sleep Research Laboratory, Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
Abstract:Considerable evidence suggests that the neurotransmitter gamma-aminobutyric acid (GABA)-ergic system and pedunculopontine tegmentum (PPT) in the brain stem are critically involved in the regulation of rapid-eye-movement (REM) sleep. GABA and its various receptors are normally present in the PPT cholinergic cell compartment. The aim of this study was to identify the role of GABA and its receptors in the regulation of REM sleep. To achieve this aim, specific receptors were activated differentially by local microinjection of selective GABA receptor agonists into the PPT while quantifying its effects on REM sleep in freely moving chronically instrumented rats (n = 21). The results demonstrated that when GABAB receptors were activated by local microinjection of a GABAB receptor selective agonist, baclofen, spontaneous REM sleep was suppressed in a dose-dependent manner. The optimum dose for REM sleep reduction was 1.5 nmol. In contrast, when GABAA and GABAC receptors were activated by microinjecting their receptor selective agonists, isoguvacine (ISGV) and cis-4-aminocrotonic acid (CACA), respectively, the total percentages of REM sleep did not change compared with the control values. In another eight freely moving rats, effects of baclofen application was tested on firing rates of REM-on cells (n = 12). Of those 12 neurons, 11 stopped firing immediately after application of baclofen [latency: 50 +/- 14 s (SD)] and remained almost silent for 130 +/- 12 min. Findings of the present study provide direct evidence that the PPT GABAB receptors and REM-on cells are involved in the regulation of REM sleep.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《Journal of neurophysiology》浏览原始摘要信息
点击此处可从《Journal of neurophysiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号