首页 | 本学科首页   官方微博 | 高级检索  
检索        


Temozolomide pharmacodynamics in patients with metastatic melanoma: dna damage and activity of repair enzymes O6-alkylguanine alkyltransferase and poly(ADP-ribose) polymerase-1.
Authors:E Ruth Plummer  Mark R Middleton  Christopher Jones  Anna Olsen  Ian Hickson  Peter McHugh  Geoffrey P Margison  Gail McGown  Mary Thorncroft  Amanda J Watson  Alan V Boddy  A Hilary Calvert  Adrian L Harris  David R Newell  Nicola J Curtin
Institution:Northern Institute for Cancer Research, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom. E.R.Plummer@ncl.ac.uk
Abstract:PURPOSE: Temozolomide, a DNA methylating agent used to treat melanoma, induces DNA damage, which is repaired by O6-alkylguanine alkyltransferase (ATase) and poly(ADP-ribose) polymerase-1 (PARP-1)-dependent base excision repair. The current study was done to define the effect of temozolomide on DNA integrity and relevant repair enzymes as a prelude to a phase I trial of the combination of temozolomide with a PARP inhibitor. EXPERIMENTAL DESIGN: Temozolomide (200 mg/m2 oral administration) was given to 12 patients with metastatic malignant melanoma. Peripheral blood lymphocytes (PBL) were analyzed for PARP activity, DNA single-strand breakage, ATase levels, and DNA methylation. PARP activity was also measured in tumor biopsies from 9 of 12 patients and in PBLs from healthy volunteers. RESULTS: Temozolomide pharmacokinetics were consistent with previous reports. Temozolomide therapy caused a substantial and sustained elevation of N7-methylguanine levels, a modest and sustained reduction in ATase activity, and a modest and transient increase in DNA strand breaks and PARP activity in PBLs. PARP-1 activity in tumor homogenates was variable (828 +/- 599 pmol PAR monomer/mg protein) and was not consistently affected by temozolomide treatment. CONCLUSIONS: The effect of temozolomide reported here are consistent with those documented in previous studies with temozolomide and similar drug, dacarbazine, demonstrating that a representative patient population was investigated. Furthermore, PARP activity was not inhibited by temozolomide treatment and this newly validated pharmacodynamic assay is therefore suitable for use in a proof-of-principle phase I trial a PARP-1 inhibitor in combination with temozolomide.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号