首页 | 本学科首页   官方微博 | 高级检索  
     

氟对大鼠骨组织3-磷酸肌醇激酶和蛋白激酶B1表达的影响
引用本文:朱海振,于燕妮,邓超男,杨丹. 氟对大鼠骨组织3-磷酸肌醇激酶和蛋白激酶B1表达的影响[J]. 中国地方病学杂志, 2011, 30(3). DOI: 10.3760/cma.j.issn.1000-4955.2011.03.008
作者姓名:朱海振  于燕妮  邓超男  杨丹
作者单位:贵阳医学院病理学教研室,550004
基金项目:科技部国际合作项目,贵州省科技厅社发重点项目,贵阳市科技局科研基金项目
摘    要:目的 观察慢性氟中毒对大鼠骨组织中3-磷酸肌醇激酶(PI3K)、蛋白激酶B1(Akt1)蛋白和mRNA表达的影响,探讨PI3K/Akt信号通路在氟骨症发病机制中的作用.方法 将36只SD大鼠按性别和体质量随机分为3组:对照组、低氟组、高氟组,每组12只.对照组自由饮用自来水(含氟量<0.5 mg/L),低、高氟组大鼠分别饮用氟化钠(NaF)配制的含氟量为5.0、50.0 mg/L的自来水.实验6个月后处死大鼠,收集血清,用酶联免疫吸附测定(ELISA)法检测骨钙素(BGP)、组织蛋白酶K(Cath-K).取大鼠股骨下段,用免疫组织化学方法和实时荧光定量PCR法检测骨组织中PI3K、Akt1蛋白和mRNA的表达.结果 各组大鼠血清BGP、Cath-K 水平比较,差异有统计学意义(F值分别为73.45、39.36,P均<0.05).与对照组[(0.15±0.03)μg/L、(18.32±2.27)pmol/L]比较,低、高氟组血清BGP[(1.99±0.62)、(2.38±0.16)μg/L]、Cath-K[(89.07±19.66)、(110.16±9.81)pmol/L]明显升高(P均<0.05),且高氟组明显高于低氟组(P均<0.05).各组大鼠骨组织PI3K、Akt1蛋白和mRNA表达水平比较,差异有统计学意义(F值分别为178.16、118.08,38.81、52.31,P均<0.05).与对照组(181.55±4.24、188.46±2.18,3.84±1.69、4.33±0.89)比较,低、高氟组大鼠骨组织PI3K(171.66±2.85、154.12±4.15,11.31±4.18、20.54±6.68)、Akt1蛋白和mRNA表达(177.47±3.16、156.42±3.18.12.52±3.13、19.43±5.36)明显增高(P均<0.05),且高氟组明显高于低氟组(P均<0.05).结论 血清BGP、Cath-K可作为慢性氟中毒骨病变的代谢指标.氟可导致大鼠骨组织中PI3K、Akt1蛋白和mRNA表达水平增高,PI3K/Akt 信号通路可能参与了氟引起的骨骼损伤机制.
Abstract:
Objective To observe the expression of phosphoinositide 3-kinase(PI3K) and protein kinase B1 (Akt1) in PI3K/Akt signaling pathway in rat bones with fluorosis, and to reveal the mechanisms of the skeletal fluorosis. Methods Thirty-six SD rats were randomly divided into 3 groups (control group, low-dose fluorosis group, high-dose fluorosis group) and 12 rats were in each group according to body weight. The rats were fed with different concentrations of fluoride (NaF) to establish fluorosis models. Controls were fed with tap water( < 0.5 mg/L), experimental animals in low- or high-dose groups were fed with water containing NaF 5.0,50.0 mg/L, respectively. Rats were sacrificed after 6 months of treating with fluoride and the serum was kept for testing the bone metabolic markers of none gla protein(BGP) and cathepsin K(Cath-K) by enzyme-linked immunosorbent assay(ELISA), the proteins and mRNA levels of PI3K and Akt1 in rat bones were detected by immunohistochemistry and real time PCR, respectively. Results Each group of serum BGP and Cath-k were compared, the difference was statistically significant(F = 73.45,39.36, all P < 0.05). The contents of BGP[(1.99 ± 0.62), (2.38 ± 0.16)μg/L] and Cath-K [(89.07 ± 19.66), (110.16 ± 9.81)pmol/L] in the low-and high-dose fluorosis groups were higher than those in the control group[(0.15 ± 0.03)μg/L,( 18.32 ± 2.27)pmol/L], and the high fluorosis group was obviously higher than the low fluorosis group (all P < 0.05). Each group of serum PI3K and Akt1 protein and mRNA were compared, the difference was statistically significant(F- 178.16,118.08,38.81,52.31, all P< 0.05). Compared to the control group (181.55 ± 4.24,188.46 ± 2.18,3.84 ± 1.69,4.33 ± 0.89), the protein and mRNA expressions of PI3K(171.66 ± 2.85,154.12 ± 4.15,11.31 ± 4.18,20.54 ± 6.68), Akt1(177.47 ± 3.16,156.42 ± 3.18,12.52 ± 3.13,19.43 ± 5.36) were higher in the low- and high-dose fluorosis groups (all P < 0.05), and the high fluorosis group was obviously higher than the low fluorosis group (all P < 0.05). Conclusions BGP and Cath-K contents could be used as bone metabolic indices in the endemic fluorosis disease. Fluoride can increase the expression of PI3K and Akt1 mRNA and protein in bone tissue of fluorosis rats, and PI3K/Akt1 signaling pathway may be involved in the pathogenesis of bone injury caused by fluoride.

关 键 词:氟化物中毒  3-磷酸肌醇激酶  蛋白激酶B  骨和骨组织

Effect of fluoride on expression of phosphoinositide 3-kinase, protein kinase B1 mRNA and protein in bone tissue of rats
ZHU Hai-zhen,YU Yan-ni,DENG Chao-nan,YANG Dan. Effect of fluoride on expression of phosphoinositide 3-kinase, protein kinase B1 mRNA and protein in bone tissue of rats[J]. Chinese Jouranl of Endemiology, 2011, 30(3). DOI: 10.3760/cma.j.issn.1000-4955.2011.03.008
Authors:ZHU Hai-zhen  YU Yan-ni  DENG Chao-nan  YANG Dan
Abstract:Objective To observe the expression of phosphoinositide 3-kinase(PI3K) and protein kinase B1 (Akt1) in PI3K/Akt signaling pathway in rat bones with fluorosis, and to reveal the mechanisms of the skeletal fluorosis. Methods Thirty-six SD rats were randomly divided into 3 groups (control group, low-dose fluorosis group, high-dose fluorosis group) and 12 rats were in each group according to body weight. The rats were fed with different concentrations of fluoride (NaF) to establish fluorosis models. Controls were fed with tap water( < 0.5 mg/L), experimental animals in low- or high-dose groups were fed with water containing NaF 5.0,50.0 mg/L, respectively. Rats were sacrificed after 6 months of treating with fluoride and the serum was kept for testing the bone metabolic markers of none gla protein(BGP) and cathepsin K(Cath-K) by enzyme-linked immunosorbent assay(ELISA), the proteins and mRNA levels of PI3K and Akt1 in rat bones were detected by immunohistochemistry and real time PCR, respectively. Results Each group of serum BGP and Cath-k were compared, the difference was statistically significant(F = 73.45,39.36, all P < 0.05). The contents of BGP[(1.99 ± 0.62), (2.38 ± 0.16)μg/L] and Cath-K [(89.07 ± 19.66), (110.16 ± 9.81)pmol/L] in the low-and high-dose fluorosis groups were higher than those in the control group[(0.15 ± 0.03)μg/L,( 18.32 ± 2.27)pmol/L], and the high fluorosis group was obviously higher than the low fluorosis group (all P < 0.05). Each group of serum PI3K and Akt1 protein and mRNA were compared, the difference was statistically significant(F- 178.16,118.08,38.81,52.31, all P< 0.05). Compared to the control group (181.55 ± 4.24,188.46 ± 2.18,3.84 ± 1.69,4.33 ± 0.89), the protein and mRNA expressions of PI3K(171.66 ± 2.85,154.12 ± 4.15,11.31 ± 4.18,20.54 ± 6.68), Akt1(177.47 ± 3.16,156.42 ± 3.18,12.52 ± 3.13,19.43 ± 5.36) were higher in the low- and high-dose fluorosis groups (all P < 0.05), and the high fluorosis group was obviously higher than the low fluorosis group (all P < 0.05). Conclusions BGP and Cath-K contents could be used as bone metabolic indices in the endemic fluorosis disease. Fluoride can increase the expression of PI3K and Akt1 mRNA and protein in bone tissue of fluorosis rats, and PI3K/Akt1 signaling pathway may be involved in the pathogenesis of bone injury caused by fluoride.
Keywords:Fluoride poisoning  Phosphoinositide 3-kinase  Protein kinase B  Bone and bones
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号