首页 | 本学科首页   官方微博 | 高级检索  
     


Deep dermal fibroblast profibrotic characteristics are enhanced by bone marrow–derived mesenchymal stem cells
Authors:Jie Ding MD  PhD  Zengshuan Ma PhD  Heather A. Shankowsky RN  Abelardo Medina MD  PhD  Edward E. Tredget MD  MSc
Affiliation:1. Wound Healing Research Group, Division of Plastic and Reconstructive Surgery;2. Division of Critical Care Medicine, Department of Surgery, University of Alberta, , Edmonton, Alberta, Canada
Abstract:Hypertrophic scars are a significant fibroproliferative disorder complicating deep injuries to the skin. We hypothesize that activated deep dermal fibroblasts are subject to regulation by bone marrow–derived mesenchymal stem cells (BM‐MSCs), which leads to the development of excessive fibrosis following deep dermal injury. We found that the expression of fibrotic factors was higher in deep burn wounds compared with superficial burn wounds collected from burn patients with varying depth of skin injury. We characterized deep and superficial dermal fibroblasts, which were cultured from the deep and superficial dermal layers of normal uninjured skin obtained from abdominoplasty patients, and examined the paracrine effects of BM‐MSCs on the fibrotic activities of the cells. In vitro, deep dermal fibroblasts were found higher in the messenger RNA (mRNA) levels of type 1 collagen, alpha smooth muscle actin, transforming growth factor beta, stromal cell–derived factor 1, and tissue inhibitor of metalloproteinase 1, an inhibitor of collagenase (matrix metalloproteinase 1). As well, deep dermal fibroblasts had low matrix metalloproteinase 1 mRNA, produced more collagen, and contracted collagen lattices significantly greater than superficial fibroblasts. By co‐culturing layered fibroblasts with BM‐MSCs in a transwell insert system, BM‐MSCs enhanced the fibrotic behavior of deep dermal fibroblasts, which suggests a possible involvement of BM‐MSCs in the pathogenesis of hypertrophic scarring.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号