首页 | 本学科首页   官方微博 | 高级检索  
     


The Difference in Respiratory and Blood Gas Values During Recovery After Exercise With Spontaneous Versus Reduced Breathing Frequency
Authors:Jernej Kapus  Anton U?aj  Venceslav Kapus  Boro ?trumbelj
Affiliation:University of Ljubljana, Faculty of Sport, Laboratory of Biodynamics, Slovenia
Abstract:Extrapolation from post-exercise measurements has been used to estimate respiratory and blood gas parameters during exercise. This may not be accurate in exercise with reduced breathing frequency (RBF), since spontaneous breathing usually follows exercise. This study was performed to ascertain whether measurement of oxygen saturation and blood gases immediately after exercise accurately reflected their values during exercise with RBF. Eight healthy male subjects performed an incremental cycling test with RBF at 10 breaths per minute. A constant load test with RBF (B10) was then performed to exhaustion at the peak power output obtained during the incremental test. Finally, the subjects repeated the constant load test with spontaneous breathing (SB) using the same protocol as B10. Pulmonary ventilation (VE), end-tidal oxygen (PETO2), and carbon dioxide pressures (PETCO2) and oxygen saturation (SaO2) were measured during both constant load tests. The partial pressures of oxygen (PO2) and carbon dioxide (PCO2) in capillary blood were measured during the last minute of exercise, immediately following exercise and during the third minute of recovery. At the end of exercise RBF resulted in lower PETO2, SaO2 and PO2, and higher PETCO2 and PCO2 when compared to spontaneous breathing during exercise. Lower SaO2 and PETO2 were detected only for the first 16s and 20s of recovery after B10 compared to the corresponding period in SB. There were no significant differences in PO2 between SB and B10 measured immediately after the exercise. During recovery from exercise, PETCO2 remained elevated for the first 120s in the B10 trial. There were also significant differences between SB and B10 in PCO2 immediately after exercise. We conclude that RBF during high intensity exercise results in hypoxia; however, due to post-exercise hyperpnoea, measurements of blood gas parameters taken 15s after cessation of exercise did not reflect the changes in PO2 and SaO2 seen during exercise.

Key points

  • In some sports, the environment is inappropriate for direct measurement of respiratory and blood gas parameters during exercise. To overcome this problem, extrapolation from post-exercise measurements has often been used to estimate changes in respiratory and blood gas parameters during exercise.
  • The possibility of hypoxia and hypercapnia during exercise with reduced breathing frequency has been tested by measuring capillary blood sampled after the exercise.
  • Reduced breathing frequency during high intensity exercise results in hypoxia; however, due to marked post-exercise hyperventilation, measurements of blood gas parameters taken 15 s after the cessation of exercise did not yield any changes in these parameters.
  • Despite hyperventilation during recovery, hypercapnia could be detected by measuring blood gas parameters within 15 s after the exercise with reduced breathing frequency.
Key words: Constant load test, reduced breathing frequency, recovery, respiratory parameters, oxygen saturation, blood gas
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号