首页 | 本学科首页   官方微博 | 高级检索  
     


Changes in oxygen tension affect cardiac mitochondrial respiration rate via changes in the rate of mitochondrial hydrogen peroxide production
Authors:Carla A. Di Maria  Douglas J. McKitrick  Livia C. Hool
Affiliation:a School of Biomedical, Biomolecular & Chemical Sciences, University of Western Australia, Australia
b Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Australia
c School of Medicine and Pharmacology, Royal Perth Hospital, University of Western Australia, Australia
d Australian National University Medical School, The Canberra Hospital, Australia
Abstract:The capacity of mitochondria to respond to changes in oxygen delivery has the potential to affect the ability of the heart to tolerate decreased oxygen delivery. Respiration by mitochondria is typically regarded as independent of oxygen tension (pO2) until critically low oxygen concentrations limit the activity of cytochrome oxidase. Paradoxically, there is evidence that cellular and mitochondrial oxygen consumption (respiration) can decline at oxygen tensions well above this critical pO2. We tested the hypothesis that oxygen sensitive decreases in mitochondrial hydrogen peroxide production can decrease cardiac mitochondrial respiration rate. Consistent with previous work, an acute decline in pO2 from 146 mm Hg to 10-13 mm Hg in less than 10 min did not affect mitochondrial respiration rate. In contrast, sustained incubation of mitochondria at a pO2 of 10-13 mm Hg for 30 min caused a 50% decrease in mitochondrial respiration rate. This decrease in mitochondrial respiration rate was mimicked by incubation with the hydrogen peroxide scavenger catalase and the decrease in mitochondrial respiration rate was fully reversible by reintroducing oxygen or by adding hydrogen peroxide. Incubation at low pO2 was also associated with a decreased rate of mitochondrial reactive oxygen species production. These findings indicate that oxygen-dependent decreases in the rate of mitochondrial hydrogen peroxide production can decrease cardiac mitochondrial respiration.
Keywords:ROS, reactive oxygen species   H2O2, hydrogen peroxide   glutamate/malate, glutamate + malate   succ, succinate   succinate/rotenone, succinate     rotenone   DHE, dihydroethidium     smallcaps"  >l-NAME, Nvnitro-  smallcaps"  >l-arginine methyl ester
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号