首页 | 本学科首页   官方微博 | 高级检索  
     


Illuminating the mechanistic roles of enzyme conformational dynamics
Authors:Hanson Jeffrey A  Duderstadt Karl  Watkins Lucas P  Bhattacharyya Sucharita  Brokaw Jason  Chu Jhih-Wei  Yang Haw
Affiliation:Department of Chemistry, Biophysics Graduate Group, and Department of Chemical Engineering, University of California, Berkeley, CA 94720, USA.
Abstract:Many enzymes mold their structures to enclose substrates in their active sites such that conformational remodeling may be required during each catalytic cycle. In adenylate kinase (AK), this involves a large-amplitude rearrangement of the enzyme's lid domain. Using our method of high-resolution single-molecule FRET, we directly followed AK's domain movements on its catalytic time scale. To quantitatively measure the enzyme's entire conformational distribution, we have applied maximum entropy-based methods to remove photon-counting noise from single-molecule data. This analysis shows unambiguously that AK is capable of dynamically sampling two distinct states, which correlate well with those observed by x-ray crystallography. Unexpectedly, the equilibrium favors the closed, active-site-forming configurations even in the absence of substrates. Our experiments further showed that interaction with substrates, rather than locking the enzyme into a compact state, restricts the spatial extent of conformational fluctuations and shifts the enzyme's conformational equilibrium toward the closed form by increasing the closing rate of the lid. Integrating these microscopic dynamics into macroscopic kinetics allows us to model lid opening-coupled product release as the enzyme's rate-limiting step.
Keywords:conformational equilibrium   rate-limiting step   single-molecule FRET   adenylate kinase
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号