首页 | 本学科首页   官方微博 | 高级检索  
     


Relative picrotoxin insensitivity distinguishes ionotropic GABA receptor-mediated IPSCs in hippocampal interneurons
Authors:Semyanov Alexey  Kullmann Dimitri M
Affiliation:University College London, Institute of Neurology, Queen Square, UK.
Abstract:Inhibitory GABAergic signalling in the hippocampus plays an important role in synchronizing principal cells and regulating the excitability of this seizure-prone structure. Distinct mechanisms modulate release from GABAergic terminals in the hippocampus, depending on whether the postsynaptic partner is an interneuron or a principal cell. Here, we report that postsynaptic ionotropic GABA receptors in principal cells and interneurons also show a striking pharmacological difference. The broad-spectrum antagonist picrotoxin (PTX) was less potent at blocking IPSCs evoked in stratum radiatum interneurons than in pyramidal neurons in the CA1 region. GABA-evoked currents in membrane patches from interneurons showed a smaller mean unitary conductance than in patches from pyramidal neurons. Because retinal GABA(C) receptors show decreased picrotoxin sensitivity and conductance, we examined the effect of the GABA(C) receptor agonist cis-aminocrotonic acid (CACA). Although this agent evoked picrotoxin-resistant currents in interneurons, these were enhanced by the GABA(A) allosteric modulator pentobarbital. Moreover, both picrotoxin-resistant IPSCs and CACA-evoked currents were blocked by the GABA(A) receptor-selective antagonist bicuculline. The presence of relatively picrotoxin-resistant GABA(A) receptors in interneurons provides a potential target for agents to modulate the activity of sub-populations of hippocampal neurons.
Keywords:Inhibition   GABAA receptors   CA1   Guinea pig   Iontophoresis
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号