首页 | 本学科首页   官方微博 | 高级检索  
     


Ammonia metabolism,the brain and fatigue; revisiting the link
Authors:Daniel J. Wilkinson  Nicholas J. SmeetonPeter W. Watt
Affiliation:Department of Sport and Exercise Science, Chelsea School, University of Brighton, 30 Carlisle Road, Eastbourne, BN20 7SP, UK
Abstract:This review addresses the ammonia fatigue theory in light of new evidence from exercise and disease studies and aims to provide a view of the role of ammonia during exercise. Hyperammonemia is a condition common to pathological liver disorders and intense or exhausting exercise. In pathology, hyperammonemia is linked to impairment of normal brain function and the onset of the neurological condition, hepatic encephalopathy. Elevated blood ammonia concentrations arise due to a diminished capacity for removal via the liver and lead to increased exposure of organs, such as the brain, to the toxic effects of ammonia. High levels of brain ammonia can lead to deleterious alterations in astrocyte morphology, cerebral energy metabolism and neurotransmission, which may in turn impact on the functioning of important signalling pathways within the neuron. Such changes are believed to contribute to the disturbances in neuropsychological function, in particular the learning, memory, and motor control deficits observed in animal models of liver disease and also patients with cirrhosis. Hyperammonemia in exercise occurs as a result of an increased production by contracting muscle, through adenosine monophosphate (AMP) deamination (the purine nucleotide cycle) and branched chain amino acid (BCAA) deamination prior to oxidation. Plasma concentrations of ammonia during exercise often achieve or exceed those measured in liver disease patients, resulting in increased cerebral uptake. In this article we propose that exercise-induced hyperammonemia may lead to concomitant disturbances in brain function, potentially through similar mechanisms underpinning pathology, which may impact on performance as fatigue or reduced function, especially during extreme exercise.
Keywords:AAT, alanine amino transferase   ADP, adenosine diphosphate   AK, adenylate kinase   AL, adenylosuccinate lyase   Ala, alanine   ALC, acetyl-L-carnitine   AMP, adenosine monophosphate   AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazole propionate   AMPD, AMP deaminase   Arg, arginine   AS, adenylosuccinate synthetase   ATP, adenosine triphosphate   a-v diff, arterio-venous difference   BBB, blood brain barrier   BCAA, branched chain amino acid   BCAT, branched-chain amino transferase   BCKDH, branched chain keto-acid dehydrogenase   BCKA, branched chain keto-acids   CBF, cerebral blood flow   cGMP, cyclic guanosine monophosphate   Cm, calmodulin   CNS, central nervous system   CoA-SH, coenzyme A reduced form   CPCCOEt, 7-hydroxyiminocyclopropan[b]chromen-la-carboxylic acid ethyl ester   CPF, cerebral plasma flow   CSF, cerebrospinal fluid   DHPG, (5)-3,5-dihydroxyphenylglycine   EAA, essential amino acid   EEG, electroencephalogram   ERP, event-related brain potential   fMRI, functional magnetic resonance imaging   GABA, gamma-aminobutyric acid   GDH, glutamate dehydrogenase   GDP, guanosine diphosphate   GI Tract, gastrointestinal tract   Glu, glutamate   Gluc, glucose   Gluc-6-P, glucose-6-phosphate   Gln, glutamine   GS, glutamine synthetase   GTP, guanosine triphosphate   HCO3&minus  , bicarbonate ion   HE, hepatic encephalopathy   IMP, inosine monophosphate   K+, potassium ion   Kinase, BCKDH kinase   LTP, long term potentiation   MDT, medio-dorsal thalamus   mGluR, metabotropic glutamate receptor   MPT, mitochondrial permeability transition   NA, nucleus accumbens   NAD+, nicotinamide adenine dinucleotide   NADH, nicotinamide adenine dinucleotide hydrate   NH3, ammonia gaseous form   NH4+, ammonium ion   NMDA, N-methyl-D-aspartate   NO, nitric oxide   NOS, nitric oxide synthetase   nNOS, neuronal nitric oxide synthetase   OP, l-ornithine phenylacetate   OTC, ornithine trancarbamoylase   PAG, phosphate activated glutaminase   PCS, portacaval shunt   PDE, phosphodiesterase   PET, positron emission tomography   PFCx, prefrontal cortex   Phos, BCKDH phosphotase   PKG, protein kinase G   PKC, protein kinase C   PLC, phospholipase C   PNC, purine nucleotide cycle   Pyr, pyruvate   R-CoA, acyl coenzyme A   RhB(C)G, rhesus non-erythroid glycoprotein B (C)   ROS, reactive oxygen species   SNr, substantia nigra pars reticulata   sGC, soluble guanylate cyclase   SNAP, S-nitroso-N-acetyl-pencillamine   VMT, ventro-medial thalamus   VP, ventral pallidum
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号