首页 | 本学科首页   官方微博 | 高级检索  
     


Metabolism of the heart and brain during hypothermic cardiopulmonary bypass
Authors:J A Swain  T J McDonald  R S Balaban  R C Robbins
Affiliation:Surgery Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.
Abstract:The alterations in tissue metabolism induced by hypothermic cardiopulmonary bypass are not completely known. Phosphorus-31 nuclear magnetic resonance spectroscopy was used to determine the effect of hypothermic cardiopulmonary bypass on energy states and intracellular pH of the heart and brain. Sheep were instrumented for cardiopulmonary bypass and had a radiofrequency coil placed over either the heart or skull. The animals were placed in a 4.7-T magnet at 37 degrees C and spectra obtained. The animals were cooled on cardiopulmonary bypass to either 26 degrees C (n = 17) or 18 degrees C (n = 14) for brain studies and to 26 degrees C (n = 12) for heart studies. Hypothermia increased the phosphocreatine/adenosine triphosphate ratio in the heart (2.38 +/- 0.23 versus 3.18 +/- 0.37, 37 degrees versus 26 degrees C, respectively, p = 0.03). The brain phosphocreatine/adenosine triphosphate ratio increased from 1.70 +/- 0.09 at 37 degrees C to 2.00 +/- 0.12 at 26 degrees C (p = 0.009) and 2.10 +/- 0.07 at 18 degrees C (p = 0.0001). Intracellular pH increased during hypothermia (heart: 7.05 +/- 0.02 to 7.18 +/- 0.02, 37 degrees versus 26 degrees C, p = 0.0001; and brain: 7.07 +/- 0.02 versus 7.32 +/- 0.02, 37 degrees versus 18 degrees C, p = 0.0001). The adenosine triphosphate resonance position is known to be sensitive to magnesium binding as well as temperature and was shifted upfield (p less than 0.01) in both the heart and brain. This effect could be totally explained by the temperature dependence of this process.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号