首页 | 本学科首页   官方微博 | 高级检索  
     


Ethanol enhanced in vivo gene delivery with non-ionic polymeric micelles inhalation.
Authors:Yen-Chin Chao  Shwu-Fen Chang  Shao-Chun Lu  Tzyh-Chang Hwang  Wei-Hsien Hsieh  Jiahorng Liaw
Affiliation:College of Pharmacy, Taipei Medical University, 250 Wu Hsing Street, Taipei 110, Taiwan.
Abstract:Modifications of both carriers and host barriers have been investigated for efficient inhalation gene delivery to lung. Here we used a biocompatible, non-ionic poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) (PEO-PPO-PEO) polymeric micelles (PM) as a carrier and combined it with ethanol to enhance membrane penetration of delivered DNA. The inhalation delivery with six 100 microg doses of pCMV-Lac Z with PM co-formulated with 10%-40% ethanol to nude mice in 2 days at 8 h interval was performed. The beta-galatosidase (beta-Gal) activity was assessed using chlorophenol red-beta-d galactopyranoside (CPRG) and X-gal staining for quantitative and qualitative analysis in tissues. The results showed that beta-Gal activity was significantly increased by 38% in lung around bronchioles when inhalation with PM and 10% ethanol was given. The 10% ethanol also increased the intracellular apparent permeability by 42% in stomach and by 141% in intestine at 48 h after the first dosage of delivery. Also delivery of DNA encoding a functional human cystic fibrosis transmembrane protein (CFTR) using the same inhalation delivery method co-formulated with 10% ethanol, an increased expression of CFTR in lung was detected by immunostaining. We concluded that 10% ethanol co-formulated with the PM system could enhance inhaled gene delivery to airway and gastrointestinal (GI) tract.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号