首页 | 本学科首页   官方微博 | 高级检索  
检索        


Synchrony dual-optic accommodating intraocular lens. Part 1: optical and biomechanical principles and design considerations
Authors:McLeod Stephen D  Vargas Luis G  Portney Val  Ting Albert
Institution:Department of Ophthalmology, University of California San Francisco, San Francisco, California, USA. mcleods@vision.ucsf.edu
Abstract:PURPOSE: To describe a dual-optic accommodating intraocular lens (IOL) based on theoretical considerations. SETTING: University and independent research group. METHODS: Ray-tracing analysis using optical modeling software (ZEMAXTM, Focus Software Inc., Tucson, Ariz) in a theoretical model eye was used to analyze lens configurations to optimize the accommodative and magnification effects of axial lens displacement. Finite-element modelling using a commercially available PC-based software package (COSMOS DesignSTAR) was applied to design the biomechanical parameters of the inter-optic articulations and optics. RESULTS: Ray-tracing analysis indicated that a dual-optic design with a high plus-powered front optic coupled to a minus posterior optic produced greater change in conjugation power of the eye compared to a single-optic intraocular lens and that magnification effects were unlikely to account for improved near vision. Finite-element modelling indicated that the 2 optics can be linked by spring-loaded haptics that allow anterior and posterior axial displacement of the front optic in response to changes in ciliary body tone and capsular tension. CONCLUSION: A dual-optic design linked by spring haptics increases the accommodative effect of axial optic displacement with minimal magnification effect and has promise for improving the performance of accommodative intraocular lenses.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号