首页 | 本学科首页   官方微博 | 高级检索  
     


Inhibition of Baroreflex Vagal Bradycardia by Selective Stimulation of Arterial Chemoreceptors in Rats
Authors:Tomohiro Murata,Kazuya Otsu,Masayoshi Kobayashi&dagger  ,Shoichiro Nosaka&Dagger  
Affiliation:Departments of Physiology and Otorhinolaryngology, Mie University School of Medicine, Tsu, Mie 514-8507, Japan.
Abstract:We reported recently that hypoxia inhibits baroreflex vagal bradycardia (BVB) in rats and that this inhibition persists following chemoreceptor denervation. However, since it is possible that hypoxia also affects the central processing of chemoreceptive input, the existence of chemoreceptor-mediated inhibition of BVB cannot be ruled out. Therefore, we have studied whether selective chemoreceptor activation affects BVB in normoxic conditions. In pentobarbital-urethane-anaesthetized, succinylcholine-immobilized, artificially ventilated rats, BVB was provoked by electrical stimulation of the aortic depressor nerve. Arterial chemoreceptors were selectively activated by intracarotid injection of a minute amount of sodium cyanide. Cyanide injection consistently increased blood pressure while changing heart rate variably. BVB was inhibited in a dose-dependent manner. This inhibition, as well as changes in blood pressure and heart rate, was abolished following transection of the carotid sinus nerve (CSN) ipsilateral to the injection. Spinal cord transection at the C2 level did not affect the inhibition. On the other hand, intracarotid cyanide had no effect on bradycardia elicited by electrical stimulation of a peripheral cut end of the cervical vagus nerve. We conclude that chemoreceptor activation definitely inhibits BVB and that this inhibition is mediated by the CSN, and predominantly occurs in the central nervous system. The possibility is suggested that severe hypoxia suppresses not only BVB but also the chemoreceptor-mediated inhibition of BVB, both via the direct, central action.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号