High-dose 166Ho-DOTMP in myeloablative treatment of multiple myeloma: pharmacokinetics, biodistribution, and absorbed dose estimation. |
| |
Authors: | Joseph G Rajendran Janet F Eary William Bensinger Larry D Durack Cheryl Vernon Alan Fritzberg |
| |
Affiliation: | Department of Radiology, University of Washington, Seattle, Washington 98195, USA. rajan@u.washington.edu |
| |
Abstract: | Thirty-two patients with multiple myeloma were treated with high doses of 166Ho-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylene-phosphonic acid (DOTMP) and were a subset of patients enrolled in a multicenter phase I/II dose escalation myeloablative trial. 166Ho with beta-emission (half-life, 26.8 h; beta-particle energies, 1.85 MeV [51%] and 1.77 MeV [48%]; gamma-photons, 80.6 keV [6.6%] and 1.38 MeV [0.9%]) was complexed to DOTMP, a macrocyclic tetraphosphonate. Pharmacokinetics, dosimetry, and biodistribution were studied. METHODS: Patients were treated at escalating dose levels of 20, 30, and 40 Gy to the bone marrow in combination with high-dose melphalan, with or without total-body irradiation, to evaluate toxicity and efficacy. After infusion with 1,110 MBq (30 mCi) of 166Ho-DOTMP for evaluation of biodistribution and dosimetry calculation, patients received the calculated amount of radioactivity for therapy in a single administration based on estimated dose calculations. RESULTS: Thirty-two patients participated in the study and were then treated. The average amount of administered radioactivity was 74.3 GBq (2,007 mCi) (range, 21.5-147.5 GBq [581-3,987 mCi]) of 166Ho-DOTMP. CONCLUSION: 166Ho-DOTMP has physical and pharmacokinetic characteristics compatible with high-dose myeloablative treatment of multiple myeloma. |
| |
Keywords: | |
|
|