首页 | 本学科首页   官方微博 | 高级检索  
检索        


Endogenous calcium buffering at photoreceptor synaptic terminals in salamander retina
Authors:Matthew J Van Hook  Wallace B Thoreson
Institution:1. Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, , Omaha, Nebraska, 68198;2. Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, , Omaha, Nebraska, 68198
Abstract:Calcium operates by several mechanisms to regulate glutamate release at rod and cone synaptic terminals. In addition to serving as the exocytotic trigger, Ca2+ accelerates replenishment of vesicles in cones and triggers Ca2+‐induced Ca2+ release (CICR) in rods. Ca2+ thereby amplifies sustained exocytosis, enabling photoreceptor synapses to encode constant and changing light. A complete picture of the role of Ca2+ in regulating synaptic transmission requires an understanding of the endogenous Ca2+ handling mechanisms at the synapse. We therefore used the “added buffer” approach to measure the endogenous Ca2+ binding ratio (κendo) and extrusion rate constant (γ) in synaptic terminals of photoreceptors in retinal slices from tiger salamander. We found that κendo was similar in both cell types—~25 and 50 in rods and cones, respectively. Using measurements of the decay time constants of Ca2+ transients, we found that γ was also similar, with values of ~100 s?1 and 160 s?1 in rods and cones, respectively. The measurements of κendo differ considerably from measurements in retinal bipolar cells, another ribbon‐bearing class of retinal neurons, but are comparable to similar measurements at other conventional synapses. The values of γ are slower than at other synapses, suggesting that Ca2+ ions linger longer in photoreceptor terminals, supporting sustained exocytosis, CICR, and Ca2+‐dependent ribbon replenishment. The mechanisms of endogenous Ca2+ handling in photoreceptors are thus well‐suited for supporting tonic neurotransmission. Similarities between rod and cone Ca2+ handling suggest that neither buffering nor extrusion underlie differences in synaptic transmission kinetics. Synapse 68:518–528, 2014 . © 2014 Wiley Periodicals, Inc.
Keywords:retina  photoreceptor  calcium buffering  added buffer  synapse  synaptic ribbon  calcium extrusion
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号