首页 | 本学科首页   官方微博 | 高级检索  
检索        


Multiple cellular mechanisms mediate the effect of lobeline on the release of norepinephrine
Authors:Sántha E  Sperlágh B  Zelles T  Zsilla G  Tóth P T  Lendvai B  Baranyi M  Vizi E S
Institution:Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
Abstract:The complex effect of lobeline on (3)H]norepinephrine ((3)H]NE) release was investigated in this study. Lobeline-induced release of (3)H]NE from the vas deferens was strictly concentration-dependent. In contrast, electrical stimulation-evoked release was characterized by diverse effects of lobeline depending on the concentration used: at lower concentration (10 microM), it increased the release and at high concentration (100 and 300 microM), the evoked release of (3)H]NE was abolished. The effect of lobeline on the basal release was Ca(2+)]-independent, insensitive to mecamylamine, a nicotinic acetylcholine receptor antagonist, and to desipramine, a noradrenaline uptake inhibitor. However, lobeline-induced release was temperature-dependent: at low temperature (12 degrees C), at which the membrane carrier proteins are inhibited, lobeline failed to increase the basal release. Lobeline dose dependently inhibited the uptake of (3)H]NE into rat hippocampal synaptic vesicles and purified synaptosomes with IC(50) values of 1.19 +/- 0.11 and 6.53 +/- 1.37 microM, respectively. Lobeline also inhibited Ca(2+) influx induced by KCl depolarization in sympathetic neurons measured with the Fura-2 technique. In addition, phenylephrine, an alpha(1)-adrenoceptor agonist, contracted the smooth muscle of the vas deferens and enhanced stimulation-evoked contraction. Both effects were inhibited by lobeline. Our results can be best explained as a reversal of the monoamine uptake by lobeline that is facilitated by the increased intracellular NE level after lobeline blocks vesicular uptake. At high concentrations, lobeline acts as a nonselective Ca(2+) channel antagonist blocking pre- and postjunctional Ca(2+) channels serving as a counterbalance for the multiple transmitter releasing actions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号