首页 | 本学科首页   官方微博 | 高级检索  
检索        


Daily intake of a formulated tomato drink affects carotenoid plasma and lymphocyte concentrations and improves cellular antioxidant protection
Authors:Porrini Marisa  Riso Patrizia  Brusamolino Antonella  Berti Cristiana  Guarnieri Serena  Visioli Francesco
Institution:Department of Food Science and Technology, Division of Human Nutrition, University of Milan, Milan, Italy.
Abstract:The salutary characteristics of the tomato are normally related to its content of carotenoids, especially lycopene, and other antioxidants. Our purpose was to verify whether the daily intake of a beverage prototype called Lyc-o-Mato((R)) containing a natural tomato extract (Lyc-o-Mato((R)) oleoresin 6 %) was able to modify plasma and lymphocyte carotenoid concentrations, particularly those of lycopene, phytoene, phytofluene and beta-carotene, and to evaluate whether this intake was sufficient to improve protection against DNA damage in lymphocytes. In a double-blind, cross-over study, twenty-six healthy subjects consumed 250 ml of the drink daily, providing about 6 mg lycopene, 4 mg phytoene, 3 mg phytofluene, 1 mg beta-carotene and 1.8 mg alpha-tocopherol, or a placebo drink. Treatments were separated by a wash-out period. Plasma and lymphocyte carotenoid and alpha-tocopherol concentrations were determined by HPLC, and DNA damage by the comet assay. After 26 d of consumption of the drink, plasma carotenoid levels increased significantly: concentrations of lycopene were 1.7-fold higher (P<0.0001); of phytofluene were 1.6-fold higher (P<0.0001); of phytoene were doubled (P<0.0005); of beta-carotene were 1.3-fold higher (P<0.05). Lymphocyte carotenoid concentrations also increased significantly: that of lycopene doubled (P<0.001); that of phytofluene was 1.8-fold higher (P<0.005); that of phytoene was 2.6-fold higher (P<0.005); that of beta-carotene was 1.5-fold higher (P<0.01). In contrast, the alpha-tocopherol concentration remained nearly constant. The intake of the tomato drink significantly reduced (by about 42 %) DNA damage (P<0.0001) in lymphocytes subjected to oxidative stress. In conclusion, the present study supports the fact that a low intake of carotenoids from tomato products improves cell antioxidant protection.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号